Skip to main content

Genomics-Enabled Precision Medicine for Cancer

  • Chapter
  • First Online:
Precision Medicine in Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 178))

Abstract

Genomic information is increasingly being incorporated into clinical cancer care. Large-scale sequencing efforts have deepened our understanding of the genomic landscape of cancer and contributed to the expanding catalog of alterations being leveraged to aid in cancer diagnosis, prognosis, and treatment. Genomic profiling can provide clinically relevant information regarding somatic point mutations, copy number alterations, translocations, and gene fusions. Genomic features, such as mutational burden, can also be measured by more comprehensive sequencing strategies and have shown value in informing potential treatment options. Ongoing clinical trials are evaluating the use of molecularly targeted agents in genomically defined subsets of cancers within and across tumor histologies. Continued advancements in clinical genomics promise to further expand the application of genomics-enabled medicine to a broader spectrum of oncology patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. https://doi.org/10.1126/science.1235122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333–339. https://doi.org/10.1038/nature12634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A et al (2018) Comprehensive characterization of cancer driver genes and mutations. Cell 173(2):371–385 e18. https://doi.org/10.1016/j.cell.2018.02.060

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S et al (2018) Driver fusions and their implications in the development and treatment of human cancers. Cell Rep 23(1):227–238 e3. https://doi.org/10.1016/j.celrep.2018.03.050

    Article  PubMed  Google Scholar 

  5. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA et al (2018) The landscape of genomic alterations across childhood cancers. Nature 555(7696):321–327. https://doi.org/10.1038/nature25480

    Article  CAS  PubMed  Google Scholar 

  7. International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C et al (2010) International network of cancer genome projects. Nature 464(7291):993–998. https://doi.org/10.1038/nature08987

  8. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344(14):1038–1042. https://doi.org/10.1056/nejm200104053441402

    Article  CAS  PubMed  Google Scholar 

  9. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. https://doi.org/10.1056/nejm200103153441101

    Article  CAS  PubMed  Google Scholar 

  10. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. https://doi.org/10.1056/nejmoa040938

    Article  CAS  PubMed  Google Scholar 

  11. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516. https://doi.org/10.1056/nejmoa1103782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385–2394. https://doi.org/10.1056/nejmoa1214886

    Article  CAS  PubMed  Google Scholar 

  13. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034. https://doi.org/10.1056/nejmoa1305275

    Article  CAS  PubMed  Google Scholar 

  14. Berger MF, Mardis ER (2018) The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 15(6):353–365. https://doi.org/10.1038/s41571-018-0002-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mardis ER (2017) DNA sequencing technologies: 2006–2016. Nat Protoc 12(2):213–218. https://doi.org/10.1038/nprot.2016.182

    Article  CAS  PubMed  Google Scholar 

  16. Gong J, Pan K, Fakih M, Pal S, Salgia R (2018) Value-based genomics. Oncotarget 9(21):15792–15815. https://doi.org/10.18632/oncotarget.24353

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hynes SO, Pang B, James JA, Maxwell P, Salto-Tellez M (2017) Tissue-based next generation sequencing: application in a universal healthcare system. Br J Cancer 116(5):553–560. https://doi.org/10.1038/bjc.2016.452

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shen T, Pajaro-Van de Stadt SH, Yeat NC, Lin JC (2015) Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. Front Genet 6:215. https://doi.org/10.3389/fgene.2015.00215

  19. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR et al (2015) Non-small cell lung cancer, version 6.2015. J Natl Compr Cancer Netw JNCCN 13(5):515–524

    Google Scholar 

  20. Nagarajan R, Bartley AN, Bridge JA, Jennings LJ, Kamel-Reid S, Kim A et al (2017) A window into clinical next-generation sequencing-based oncology testing practices. Arch Pathol Lab Med 141(12):1679–1685. https://doi.org/10.5858/arpa.2016-0542-cp

    Article  PubMed  Google Scholar 

  21. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A et al (2015) Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn JMD 17(3):251–264. https://doi.org/10.1016/j.jmoldx.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  22. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR et al (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23(6):703–713. https://doi.org/10.1038/nm.4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seeber A, Gastl G, Ensinger C, Spizzo G, Willenbacher W, Kocher F et al (2016) Treatment of patients with refractory metastatic cancer according to molecular profiling on tumor tissue in the clinical routine: an interim-analysis of the ONCO-T-PROFILE project. Genes Cancer 7(9–10):301–308. https://doi.org/10.18632/genesandcancer.121

    Article  PubMed  PubMed Central  Google Scholar 

  24. Herzog TJ, Spetzler D, Xiao N, Burnett K, Maney T, Voss A et al (2016) Impact of molecular profiling on overall survival of patients with advanced ovarian cancer. Oncotarget 7(15):19840–19849. https://doi.org/10.18632/oncotarget.7835

    Article  PubMed  PubMed Central  Google Scholar 

  25. Beaubier N, Tell R, Huether R, Bontrager M, Bush S, Parsons J et al (2018) Clinical validation of the Tempus xO assay. Oncotarget 9(40):25826–25832. https://doi.org/10.18632/oncotarget.25381

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P et al (2012) High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov 2(1):82–93. https://doi.org/10.1158/2159-8290.cd-11-0184

    Article  CAS  PubMed  Google Scholar 

  27. Hamblin A, Wordsworth S, Fermont JM, Page S, Kaur K, Camps C et al (2017) Clinical applicability and cost of a 46-gene panel for genomic analysis of solid tumours: retrospective validation and prospective audit in the UK National Health Service. PLoS Med 14(2):e1002230. https://doi.org/10.1371/journal.pmed.1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee A, Lee SH, Jung CK, Park G, Lee KY, Choi HJ et al (2018) Use of the Ion AmpliSeq Cancer Hotspot Panel in clinical molecular pathology laboratories for analysis of solid tumours: with emphasis on validation with relevant single molecular pathology tests and the Oncomine Focus Assay. Pathol Res Pract 214(5):713–719. https://doi.org/10.1016/j.prp.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  29. Lim SM, Kim EY, Kim HR, Ali SM, Greenbowe JR, Shim HS et al (2016) Genomic profiling of lung adenocarcinoma patients reveals therapeutic targets and confers clinical benefit when standard molecular testing is negative. Oncotarget 7(17):24172–24178. https://doi.org/10.18632/oncotarget.8138

    Article  PubMed  PubMed Central  Google Scholar 

  30. Suh JH, Johnson A, Albacker L, Wang K, Chmielecki J, Frampton G et al (2016) Comprehensive genomic profiling facilitates implementation of the National Comprehensive Cancer Network guidelines for lung cancer biomarker testing and identifies patients who may benefit from enrollment in mechanism-driven clinical trials. Oncologist 21(6):684–691. https://doi.org/10.1634/theoncologist.2016-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A, Rennert H et al (2015) Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol 1(4):466–474. https://doi.org/10.1001/jamaoncol.2015.1313

    Article  PubMed  PubMed Central  Google Scholar 

  32. Teer JK, Mullikin JC (2010) Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet 19(R2):R145–R151. https://doi.org/10.1093/hmg/ddq333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Panda A, Betigeri A, Subramanian K, Ross JS, Pavlick DC, Ali S et al (2017) Identifying a clinically applicable mutational burden threshold as a potential biomarker of response to immune checkpoint therapy in solid tumors. JCO Precis Oncol 2017. https://doi.org/10.1200/po.17.00146

  34. Horak P, Frohling S, Glimm H (2016) Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open 1(5):e000094. https://doi.org/10.1136/esmoopen-2016-000094

    Article  PubMed  PubMed Central  Google Scholar 

  35. Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J et al (2017) Integrative clinical genomics of metastatic cancer. Nature 548(7667):297–303. https://doi.org/10.1038/nature23306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW (2016) Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 17(5):257–271. https://doi.org/10.1038/nrg.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mody RJ, Wu YM, Lonigro RJ, Cao X, Roychowdhury S, Vats P et al (2015) Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA 314(9):913–925. https://doi.org/10.1001/jama.2015.10080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Byron SA, Tran NL, Halperin RF, Phillips JJ, Kuhn JG, de Groot JF et al (2018) Prospective feasibility trial for genomics-informed treatment in recurrent and progressive glioblastoma. Clin Cancer Res 24(2):295–305. https://doi.org/10.1158/1078-0432.ccr-17-0963

    Article  CAS  PubMed  Google Scholar 

  39. Uzilov AV, Ding W, Fink MY, Antipin Y, Brohl AS, Davis C et al (2016) Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Med 8(1):62. https://doi.org/10.1186/s13073-016-0313-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borad MJ, Egan JB, Condjella RM, Liang WS, Fonseca R, Ritacca NR et al (2016) Clinical implementation of integrated genomic profiling in patients with advanced cancers. Sci Rep 6(1):25. https://doi.org/10.1038/s41598-016-0021-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aguirre AJ, Nowak JA, Camarda ND, Moffitt RA, Ghazani AA, Hazar-Rethinam M et al (2018) Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discov. https://doi.org/10.1158/2159-8290.cd-18-0275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3(111):111ra21. https://doi.org/10.1126/scitranslmed.3003161

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nakagawa H, Wardell CP, Furuta M, Taniguchi H, Fujimoto A (2015) Cancer whole-genome sequencing: present and future. Oncogene 34(49):5943–5950. https://doi.org/10.1038/onc.2015.90

    Article  CAS  PubMed  Google Scholar 

  44. Weymann D, Laskin J, Roscoe R, Schrader KA, Chia S, Yip S et al (2017) The cost and cost trajectory of whole-genome analysis guiding treatment of patients with advanced cancers. Mol Genet Genomic Med 5(3):251–260. https://doi.org/10.1002/mgg3.281

    Article  PubMed  PubMed Central  Google Scholar 

  45. Laskin J, Jones S, Aparicio S, Chia S, Ch’ng C, Deyell R et al (2015) Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. Cold Spring Harb Mol Case Stud 1(1):a000570. https://doi.org/10.1101/mcs.a000570

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schuh A, Dreau H, Knight SJL, Ridout K, Mizani T, Vavoulis D et al (2018)Clinically actionable mutation profiles in patients with cancer identified by whole-genome sequencing. Cold Spring Harb Mol Case Stud 4(2). https://doi.org/10.1101/mcs.a002279

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17(4):223–238. https://doi.org/10.1038/nrc.2017.7

    Article  CAS  PubMed  Google Scholar 

  48. Kwapisz D (2017) The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med 5(3):46. https://doi.org/10.21037/atm.2017.01.32

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schwaederle M, Chattopadhyay R, Kato S, Fanta PT, Banks KC, Choi IS et al (2017) Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation sequencing. Can Res 77(19):5419–5427. https://doi.org/10.1158/0008-5472.can-17-0885

    Article  CAS  Google Scholar 

  50. Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R et al (2018) The value of cell-free DNA for molecular pathology. J Pathol 244(5):616–627. https://doi.org/10.1002/path.5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133. https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L et al (2018) Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 124(8):1682–1690. https://doi.org/10.1002/cncr.31245

    Article  CAS  PubMed  Google Scholar 

  53. Boyd N, Dancey JE, Gilks CB, Huntsman DG (2016) Rare cancers: a sea of opportunity. Lancet Oncol 17(2):e52–e61. https://doi.org/10.1016/S1470-2045(15)00386-1

    Article  PubMed  Google Scholar 

  54. Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C et al (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases and remarkable consistency of t (11; 22)(q24; q12). Cancer Genet Cytogenet 32(2):229–238

    Article  CAS  PubMed  Google Scholar 

  55. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580

    Article  CAS  PubMed  Google Scholar 

  56. Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K, Shinomura Y et al (2003) Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125(3):660–667

    Article  CAS  PubMed  Google Scholar 

  57. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP et al (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364(24):2305–2315. https://doi.org/10.1056/nejmoa1014209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jelinic P, Mueller JJ, Olvera N, Dao F, Scott SN, Shah R et al (2014) Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 46(5):424–426. https://doi.org/10.1038/ng.2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, Hendricks WP et al (2014) Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 46(5):427–429. https://doi.org/10.1038/ng.2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N, Tomiak E et al (2014) Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 46(5):438–443. https://doi.org/10.1038/ng.2931

    Article  CAS  PubMed  Google Scholar 

  61. Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC et al (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360(26):2719–2729. https://doi.org/10.1056/nejmoa0902542

    Article  CAS  PubMed  Google Scholar 

  62. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  63. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M et al (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4(2):216–231. https://doi.org/10.1158/2159-8290.cd-13-0639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hollmann TJ, Hornick JL (2011) INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol 35(10):e47–e63. https://doi.org/10.1097/pas.0b013e31822b325b

    Article  PubMed  Google Scholar 

  65. Le Loarer F, Watson S, Pierron G, de Montpreville VT, Ballet S, Firmin N et al (2015) SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat Genet 47(10):1200–1205. https://doi.org/10.1038/ng.3399

    Article  CAS  PubMed  Google Scholar 

  66. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394(6689):203–206. https://doi.org/10.1038/28212

    Article  CAS  PubMed  Google Scholar 

  67. Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O (1999) Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65(5):1342–1348. https://doi.org/10.1086/302639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J et al (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45(6):592–601. https://doi.org/10.1038/ng.2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lang JD, Hendricks WPD, Orlando KA, Yin H, Kiefer J, Ramos P et al (2018) Ponatinib shows potent antitumor activity in small cell carcinoma of the ovary hypercalcemic type (SCCOHT) through multikinase inhibition. Clin Cancer Res 24(8):1932–1943. https://doi.org/10.1158/1078-0432.ccr-17-1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ross JS, Wang K, Gay L, Otto GA, White E, Iwanik K et al (2015) Comprehensive genomic profiling of carcinoma of unknown primary site: new routes to targeted therapies. JAMA Oncol 1(1):40–49. https://doi.org/10.1001/jamaoncol.2014.216

    Article  PubMed  Google Scholar 

  71. Kandalaft PL, Gown AM (2016) Practical applications in immunohistochemistry: carcinomas of unknown primary site. Arch Pathol Lab Med 140(6):508–523. https://doi.org/10.5858/arpa.2015-0173-cp

    Article  CAS  PubMed  Google Scholar 

  72. Losa F, Soler G, Casado A, Estival A, Fernandez I, Gimenez S et al (2018) SEOM clinical guideline on unknown primary cancer (2017). Clin Transl Oncol 20(1):89–96. https://doi.org/10.1007/s12094-017-1807-y

    Article  CAS  PubMed  Google Scholar 

  73. Benderra MA, Ilie M, Hofman P, Massard C (2016) Standard of care of carcinomas on cancer of unknown primary site in 2016. Bull Cancer 103(7–8):697–705. https://doi.org/10.1016/j.bulcan.2016.05.003

    Article  PubMed  Google Scholar 

  74. Economopoulou P, Mountzios G, Pavlidis N, Pentheroudakis G (2015) Cancer of unknown primary origin in the genomic era: elucidating the dark box of cancer. Cancer Treat Rev 41(7):598–604. https://doi.org/10.1016/j.ctrv.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  75. Gatalica Z, Millis SZ, Vranic S, Bender R, Basu GD, Voss A et al (2014) Comprehensive tumor profiling identifies numerous biomarkers of drug response in cancers of unknown primary site: analysis of 1806 cases. Oncotarget 5(23):12440–12447. https://doi.org/10.18632/oncotarget.2574

    Article  PubMed  PubMed Central  Google Scholar 

  76. Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM et al (2016) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 34(10):1134–1150. https://doi.org/10.1200/jco.2015.65.2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373(21):2005–2014. https://doi.org/10.1056/nejmoa1510764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamanaka T, Oki E, Yamazaki K, Yamaguchi K, Muro K, Uetake H et al (2016) 12-gene recurrence score assay stratifies the recurrence risk in stage II/III colon cancer with surgery alone: the SUNRISE study. J Clin Oncol 34(24):2906–2913. https://doi.org/10.1200/jco.2016.67.0414

    Article  CAS  PubMed  Google Scholar 

  79. Mahar AL, Compton C, Halabi S, Hess KR, Weiser MR, Groome PA (2017) Personalizing prognosis in colorectal cancer: a systematic review of the quality and nature of clinical prognostic tools for survival outcomes. J Surg Oncol 116(8):969–982. https://doi.org/10.1002/jso.24774

    Article  PubMed  PubMed Central  Google Scholar 

  80. Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T et al (2014) A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol 66(3):550–560. https://doi.org/10.1016/j.eururo.2014.05.004

    Article  PubMed  Google Scholar 

  81. Eure G, Germany R, Given R, Lu R, Shindel AW, Rothney M et al (2017) Use of a 17-gene prognostic assay in contemporary urologic practice: results of an interim analysis in an observational cohort. Urology 107:67–75. https://doi.org/10.1016/j.urology.2017.02.052

    Article  PubMed  Google Scholar 

  82. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K et al (2009) The international neuroblastoma risk group (INRG) staging system: an INRG task force report. J Clin Oncol 27(2):298–303. https://doi.org/10.1200/jco.2008.16.6876

    Article  PubMed  PubMed Central  Google Scholar 

  83. Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23(3):609–618. https://doi.org/10.1200/jco.2005.01.086

    Article  CAS  PubMed  Google Scholar 

  84. Roth AD, Delorenzi M, Tejpar S, Yan P, Klingbiel D, Fiocca R et al (2012) Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst 104(21):1635–1646. https://doi.org/10.1093/jnci/djs427

    Article  CAS  PubMed  Google Scholar 

  85. Kawakami H, Zaanan A, Sinicrope FA (2015) Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol 16(7):30. https://doi.org/10.1007/s11864-015-0348-2

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447. https://doi.org/10.1182/blood-2016-08-733196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343(26):1910–1916. https://doi.org/10.1056/nejm200012283432602

    Article  CAS  PubMed  Google Scholar 

  88. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94(6):1840–1847

    CAS  PubMed  Google Scholar 

  89. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94(6):1848–1854

    CAS  PubMed  Google Scholar 

  90. International CLL-IPI Working Group (2016) An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 17(6):779–790. https://doi.org/10.1016/s1470-2045(16)30029-8

  91. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T et al (2016) Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 17(6):768–778. https://doi.org/10.1016/s1470-2045(16)30019-5

    Article  CAS  PubMed  Google Scholar 

  92. Edelmann J, Gribben JG (2017) Managing patients with TP53-deficient chronic lymphocytic leukemia. J Oncol Pract 13(6):371–377. https://doi.org/10.1200/jop.2017.023291

    Article  PubMed  Google Scholar 

  93. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R et al (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371(21):1963–1971. https://doi.org/10.1056/nejmoa1406766

    Article  PubMed  PubMed Central  Google Scholar 

  94. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500. https://doi.org/10.1126/science.1099314

    Article  CAS  PubMed  Google Scholar 

  95. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101(36):13306–13311. https://doi.org/10.1073/pnas.0405220101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417. https://doi.org/10.1056/nejmoa062867

    Article  CAS  PubMed  Google Scholar 

  97. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S et al (2016) Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 30(5):1044–1054. https://doi.org/10.1038/leu.2016.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP et al (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 376(10):917–927. https://doi.org/10.1056/nejmoa1609324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kantarjian H, O’Brien S, Jabbour E, Garcia-Manero G, Quintas-Cardama A, Shan J et al (2012) Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: a single-institution historical experience. Blood 119(9):1981–1987. https://doi.org/10.1182/blood-2011-08-358135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bower H, Bjorkholm M, Dickman PW, Hoglund M, Lambert PC, Andersson TM (2016) Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol 34(24):2851–2857. https://doi.org/10.1200/jco.2015.66.2866

    Article  CAS  PubMed  Google Scholar 

  101. Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM (2015) Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med 7:129. https://doi.org/10.1186/s13073-015-0252-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brastianos PK, Ippen FM, Hafeez U, Gan HK (2018) Emerging gene fusion drivers in primary and metastatic central nervous system malignancies: a review of available evidence for systemic targeted therapies. Oncologist. https://doi.org/10.1634/theoncologist.2017-0614

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mertens F, Antonescu CR, Mitelman F (2016) Gene fusions in soft tissue tumors: recurrent and overlapping pathogenetic themes. Genes Chromosom Cancer 55(4):291–310. https://doi.org/10.1002/gcc.22335

    Article  CAS  PubMed  Google Scholar 

  104. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C (2014) The landscape of kinase fusions in cancer. Nat Commun 5:4846. https://doi.org/10.1038/ncomms5846

    Article  CAS  PubMed  Google Scholar 

  105. Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H et al (2015) The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 34(37):4845–4854. https://doi.org/10.1038/onc.2014.406

    Article  CAS  PubMed  Google Scholar 

  106. Schram AM, Chang MT, Jonsson P, Drilon A (2017) Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol 14(12):735–748. https://doi.org/10.1038/nrclinonc.2017.127

    Article  CAS  PubMed  Google Scholar 

  107. Katayama R, Lovly CM, Shaw AT (2015) Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 21(10):2227–2235. https://doi.org/10.1158/1078-0432.ccr-14-2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G et al (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med 137(6):828–860. https://doi.org/10.5858/arpa.2012-0720-oa

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leighl NB, Rekhtman N, Biermann WA, Huang J, Mino-Kenudson M, Ramalingam SS et al (2014) Molecular testing for selection of patients with lung cancer for epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the study of lung cancer/association for molecular pathology guideline. J Clin Oncol 32(32):3673–3679. https://doi.org/10.1200/jco.2014.57.3055

    Article  PubMed  PubMed Central  Google Scholar 

  110. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371(23):2167–2177. https://doi.org/10.1056/nejmoa1408440

    Article  PubMed  Google Scholar 

  111. Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J et al (2017) First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389(10072):917–929. https://doi.org/10.1016/s0140-6736(17)30123-x

    Article  CAS  PubMed  Google Scholar 

  112. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–870. https://doi.org/10.1200/jco.2011.35.6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin JJ, Shaw AT (2017) Recent advances in targeting ROS1 in lung cancer. J Thorac Oncol 12(11):1611–1625. https://doi.org/10.1016/j.jtho.2017.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tabernero J, Bahleda R, Dienstmann R, Infante JR, Mita A, Italiano A et al (2015) Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol 33(30):3401–3408. https://doi.org/10.1200/jco.2014.60.7341

    Article  CAS  PubMed  Google Scholar 

  115. Kheder ES, Hong DS (2018) Emerging targeted therapy for tumors with NTRK fusion proteins. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-18-1156

    Article  PubMed  Google Scholar 

  116. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J et al (2017) Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov 7(4):400–409. https://doi.org/10.1158/2159-8290.cd-16-1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739. https://doi.org/10.1056/nejmoa1714448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM et al (2013) Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst 105(9):595–605. https://doi.org/10.1093/jnci/djt072

    Article  CAS  PubMed  Google Scholar 

  119. Cheng L, Lopez-Beltran A, Massari F, MacLennan GT, Montironi R (2018) Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol 31(1):24–38. https://doi.org/10.1038/modpathol.2017.104

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365. https://doi.org/10.1016/s0140-6736(12)60868-x

    Article  CAS  PubMed  Google Scholar 

  121. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367(2):107–114. https://doi.org/10.1056/nejmoa1203421

    Article  CAS  PubMed  Google Scholar 

  122. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703. https://doi.org/10.1056/nejmoa1210093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J et al (2014) Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 371(20):1877–1888. https://doi.org/10.1056/nejmoa1406037

    Article  PubMed  Google Scholar 

  124. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876. https://doi.org/10.1056/nejmoa1408868

    Article  PubMed  Google Scholar 

  125. Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373(8):726–736. https://doi.org/10.1056/nejmoa1502309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765. https://doi.org/10.1056/nejmoa0804385

    Article  CAS  PubMed  Google Scholar 

  127. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M et al (2014) Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol 25(7):1346–1355. https://doi.org/10.1093/annonc/mdu141

    Article  CAS  PubMed  Google Scholar 

  128. Van Cutsem E, Lenz HJ, Kohne CH, Heinemann V, Tejpar S, Melezinek I et al (2015) Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 33(7):692–700. https://doi.org/10.1200/jco.2014.59.4812

    Article  PubMed  Google Scholar 

  129. Allegra CJ, Rumble RB, Hamilton SR, Mangu PB, Roach N, Hantel A et al (2016) Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J Clin Oncol 34(2):179–185. https://doi.org/10.1200/jco.2015.63.9674

    Article  CAS  PubMed  Google Scholar 

  130. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976

    Article  CAS  PubMed  Google Scholar 

  131. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013. https://doi.org/10.1200/jco.2013.50.9984

    Article  PubMed  Google Scholar 

  132. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M et al (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8):724–734. https://doi.org/10.1056/nejmoa1413513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697. https://doi.org/10.1016/s0140-6736(10)61121-x

    Article  CAS  PubMed  Google Scholar 

  134. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  135. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122):957–959. https://doi.org/10.1126/science.1229259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961. https://doi.org/10.1126/science.1230062

    Article  CAS  PubMed  Google Scholar 

  137. Bell RJ, Rube HT, Xavier-Magalhaes A, Costa BM, Mancini A, Song JS et al (2016) Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res MCR 14(4):315–323. https://doi.org/10.1158/1541-7786.mcr-16-0003

    Article  CAS  PubMed  Google Scholar 

  138. Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V et al (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4:2185. https://doi.org/10.1038/ncomms3185

    Article  CAS  PubMed  Google Scholar 

  139. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110(15):6021–6026. https://doi.org/10.1073/pnas.1303607110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK et al (2013) Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 20(4):603–610. https://doi.org/10.1530/erc-13-0210

    Article  PubMed  PubMed Central  Google Scholar 

  141. Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T et al (2013) Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab 98(9):E1562–E1566. https://doi.org/10.1210/jc.2013-2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Simon M, Hosen I, Gousias K, Rachakonda S, Heidenreich B, Gessi M et al (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro-Oncology 17(1):45–52. https://doi.org/10.1093/neuonc/nou158

    Article  CAS  PubMed  Google Scholar 

  143. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508. https://doi.org/10.1056/nejmoa1407279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H et al (2016) A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 4(1):79. https://doi.org/10.1186/s40478-016-0351-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Heidenreich B, Nagore E, Rachakonda PS, Garcia-Casado Z, Requena C, Traves V et al (2014) Telomerase reverse transcriptase promoter mutations in primary cutaneous melanoma. Nat Commun 5:3401. https://doi.org/10.1038/ncomms4401

    Article  CAS  PubMed  Google Scholar 

  146. Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G et al (2014) TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 99(6):E1130–E1136. https://doi.org/10.1210/jc.2013-4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413. https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520. https://doi.org/10.1056/nejmoa1500596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lee V, Murphy A, Le DT, Diaz LA Jr (2016) Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist 21(10):1200–1211. https://doi.org/10.1634/theoncologist.2016-0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lemery S, Keegan P, Pazdur R (2017) First FDA approval agnostic of cancer site—when a biomarker defines the indication. N Engl J Med 377(15):1409–1412. https://doi.org/10.1056/nejmp1709968

    Article  PubMed  Google Scholar 

  151. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer—the stable evidence. Nat Rev Clin Oncol 7(3):153–162. https://doi.org/10.1038/nrclinonc.2009.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J (2018) Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 7(3):746–756. https://doi.org/10.1002/cam4.1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hause RJ, Pritchard CC, Shendure J, Salipante SJ (2016) Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 22(11):1342–1350. https://doi.org/10.1038/nm.4191

    Article  CAS  PubMed  Google Scholar 

  154. Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ (2017) A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 8:15180. https://doi.org/10.1038/ncomms15180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M et al (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34(19):2206–2211. https://doi.org/10.1200/jco.2016.66.6552

    Article  CAS  PubMed  Google Scholar 

  156. Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K et al (2016) Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Investig 126(6):2334–2340. https://doi.org/10.1172/JCI84940

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bhangoo MS, Boasberg P, Mehta P, Elvin JA, Ali SM, Wu W et al (2018) Tumor mutational burden guides therapy in a treatment refractory POLE-mutant uterine carcinosarcoma. Oncologist 23(5):518–523. https://doi.org/10.1634/theoncologist.2017-0342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gong J, Wang C, Lee PP, Chu P, Fakih M (2017) Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a POLE mutation. J Natl Compr Cancer Netw JNCCN 15(2):142–147

    Article  Google Scholar 

  159. Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A et al (2016) Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov 6(11):1230–1236. https://doi.org/10.1158/2159-8290.cd-16-0575

    Article  PubMed  PubMed Central  Google Scholar 

  160. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9(1):34. https://doi.org/10.1186/s13073-017-0424-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J et al (2006) A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Can Res 66(8):3987–3991. https://doi.org/10.1158/0008-5472.can-06-0127

    Article  CAS  Google Scholar 

  162. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608. https://doi.org/10.1158/1535-7163.mct-17-0386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Von Hoff DD, Stephenson JJ Jr, Rosen P, Loesch DM, Borad MJ, Anthony S et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28(33):4877–4883. https://doi.org/10.1200/jco.2009.26.5983

    Article  Google Scholar 

  165. Tsimberidou AM, Iskander NG, Hong DS, Wheler JJ, Falchook GS, Fu S et al (2012) Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center initiative. Clin Cancer Res 18(22):6373–6383. https://doi.org/10.1158/1078-0432.ccr-12-1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stockley TL, Oza AM, Berman HK, Leighl NB, Knox JJ, Shepherd FA et al (2016) Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial. Genome Med 8(1):109. https://doi.org/10.1186/s13073-016-0364-2

    Article  PubMed  PubMed Central  Google Scholar 

  167. Le Tourneau C, Delord JP, Goncalves A, Gavoille C, Dubot C, Isambert N et al (2015) Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16(13):1324–1334. https://doi.org/10.1016/s1470-2045(15)00188-6

    Article  PubMed  Google Scholar 

  168. Massard C, Michiels S, Ferte C, Le Deley MC, Lacroix L, Hollebecque A et al (2017) High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov 7(6):586–595. https://doi.org/10.1158/2159-8290.cd-16-1396

    Article  CAS  PubMed  Google Scholar 

  169. Forrest SJ, Geoerger B, Janeway KA (2018) Precision medicine in pediatric oncology. Curr Opin Pediatr 30(1):17–24. https://doi.org/10.1097/mop.0000000000000570

    Article  PubMed  Google Scholar 

  170. McNeil C (2015) NCI-MATCH launch highlights new trial design in precision-medicine era. J Natl Cancer Inst 107(7). https://doi.org/10.1093/jnci/djv193

    Article  PubMed  Google Scholar 

  171. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M et al (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338(6104):221. https://doi.org/10.1126/science.1226344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chau NG, Lorch JH (2015) Exceptional responders inspire change: lessons for drug development from the bedside to the bench and back. Oncologist 20(7):699–701. https://doi.org/10.1634/theoncologist.2014-0476

    Article  PubMed  PubMed Central  Google Scholar 

  173. Rodriguez-Moreno JF, Apellaniz-Ruiz M, Roldan-Romero JM, Duran I, Beltran L, Montero-Conde C et al (2017) Exceptional response to temsirolimus in a metastatic clear cell renal cell carcinoma with an early novel mTOR-activating mutation. J Natl Compr Cancer Netw JNCCN 15(11):1310–1315. https://doi.org/10.6004/jnccn.2017.7018

    Article  Google Scholar 

  174. Lim SM, Park HS, Kim S, Kim S, Ali SM, Greenbowe JR et al (2016) Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus. Oncotarget 7(9):10547–10556. https://doi.org/10.18632/oncotarget.7234

    Article  PubMed  PubMed Central  Google Scholar 

  175. Drilon A, Somwar R, Mangatt BP, Edgren H, Desmeules P, Ruusulehto A et al (2018) Response to ERBB3-directed targeted therapy in NRG1-rearranged cancers. Cancer Discov 8(6):686–695. https://doi.org/10.1158/2159-8290.cd-17-1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Do K, O’Sullivan Coyne G, Chen AP (2015) An overview of the NCI precision medicine trials-NCI MATCH and MPACT. Chin Clin Oncol 4(3):31. https://doi.org/10.3978/j.issn.2304-3865.2015.08.01

    Article  PubMed  Google Scholar 

  177. Prawira A, Pugh TJ, Stockley TL, Siu LL (2017) Data resources for the identification and interpretation of actionable mutations by clinicians. Ann Oncol 28(5):946–957. https://doi.org/10.1093/annonc/mdx023

    Article  CAS  PubMed  Google Scholar 

  178. Brusco LL, Wathoo C, Mills Shaw KR, Holla VR, Bailey AM, Johnson AM et al (2018) Physician interpretation of genomic test results and treatment selection. Cancer 124(5):966–972. https://doi.org/10.1002/cncr.31112

    Article  PubMed  Google Scholar 

  179. Tsang H, Addepalli K, Davis SR (2017) Resources for interpreting variants in precision genomic oncology applications. Front Oncol 7:214. https://doi.org/10.3389/fonc.2017.00214

    Article  PubMed  PubMed Central  Google Scholar 

  180. Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C et al (2018) Pathogenic germline variants in 10,389 adult cancers. Cell 173(2):355–370 e14. https://doi.org/10.1016/j.cell.2018.03.039

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J et al (2015) Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373(24):2336–2346. https://doi.org/10.1056/nejmoa1508054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K et al (2016) Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2015.5699

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mandelker D, Zhang L, Kemel Y, Stadler ZK, Joseph V, Zehir A et al (2017) Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA 318(9):825–835. https://doi.org/10.1001/jama.2017.11137

    Article  PubMed  PubMed Central  Google Scholar 

  184. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134. https://doi.org/10.1056/nejmoa0900212

    Article  CAS  PubMed  Google Scholar 

  185. Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T et al (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21(19):4257–4261. https://doi.org/10.1158/1078-0432.ccr-15-0887

    Article  CAS  PubMed  Google Scholar 

  186. Balasubramaniam S, Beaver JA, Horton S, Fernandes LL, Tang S, Horne HN et al (2017) FDA approval summary: rucaparib for the treatment of patients with deleterious BRCA mutation-associated advanced ovarian cancer. Clin Cancer Res 23(23):7165–7170. https://doi.org/10.1158/1078-0432.ccr-17-1337

    Article  CAS  PubMed  Google Scholar 

  187. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N et al (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533. https://doi.org/10.1056/nejmoa1706450

    Article  CAS  PubMed  Google Scholar 

  188. Kamel D, Gray C, Walia JS, Kumar V (2018) PARP inhibitor drugs in the treatment of breast, ovarian, prostate and pancreatic cancers: an update of clinical trials. Curr Drug Targets 19(1):21–37. https://doi.org/10.2174/1389450118666170711151518

    Article  CAS  PubMed  Google Scholar 

  189. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R et al (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171(5):1042–1056 e10. https://doi.org/10.1016/j.cell.2017.09.048

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ahn SM, Ansari AA, Kim J, Kim D, Chun SM, Kim J et al (2016) The somatic POLE P286R mutation defines a unique subclass of colorectal cancer featuring hypermutation, representing a potential genomic biomarker for immunotherapy. Oncotarget 7(42):68638–68649. https://doi.org/10.18632/oncotarget.11862

    Article  PubMed  PubMed Central  Google Scholar 

  191. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ et al (2018) Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther 103(2):210–216. https://doi.org/10.1002/cpt.911

    Article  CAS  PubMed  Google Scholar 

  192. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW et al (2013) Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 93(4):324–325. https://doi.org/10.1038/clpt.2013.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M et al (2018) Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin Pharmacol Ther 103(5):770–777. https://doi.org/10.1002/cpt.1007

    Article  PubMed  Google Scholar 

  194. Wellmann R, Borden BA, Danahey K, Nanda R, Polite BN, Stadler WM et al (2018) Analyzing the clinical actionability of germline pharmacogenomic findings in oncology. Cancer. https://doi.org/10.1002/cncr.31382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Ben and Catherine Ivy Foundation and the Dell Inc. Powering the Possible Program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Byron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roos, A., Byron, S.A. (2019). Genomics-Enabled Precision Medicine for Cancer. In: Von Hoff, D., Han, H. (eds) Precision Medicine in Cancer Therapy . Cancer Treatment and Research, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-16391-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16391-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16390-7

  • Online ISBN: 978-3-030-16391-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics