Skip to main content

Immunohistochemistry-Enabled Precision Medicine

  • Chapter
  • First Online:
Precision Medicine in Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 178))

Abstract

Immunohistochemistry (IHC) can be applied to diagnostic aspects of pathologic examination to provide aid in assignment of lineage and histologic type of cancer. Increasingly, however, IHC is widely used to provide prognostic and predictive (theranostic) information about the neoplastic disease. A refinement of theranostic application of IHC can be seen in the use of “genomic probing” where antibody staining results are directly correlated with an underlying genetic alteration in the tumor (somatic mutations) and/or the patient (germline constitution). All these aspects of IHC find their best use in guiding the oncologists in the optimal use of therapy for the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitzgibbons PL et al (2015) Principles of analytic validation for immunohistochemical assays—guideline from the Pathology and Laboratory Quality Center. Arch Pathol Lab Med. Supplemental Digital Content Methodology (February 2015)

    Google Scholar 

  2. Torlakovic EE et al (2017) Evolution of quality assurance for clinical immunohistochemistry in the era of precision medicine–Part 2: Immunohistochemistry test performance characteristics. Appl Immunohistochem Mol Morphol 25(2):79–85

    Article  PubMed  Google Scholar 

  3. Administration, U.S.F.D. (2018) Companion diagnostics [cited 2018 05/29/2018]. Available from: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm407297.htm

  4. Barr NJ, Taylor CR, Approach to the “unknown primary”–anaplastic tumors

    Google Scholar 

  5. Taylor CR, Cote RJ (1994) Immunomicroscopy: a diagnostic tool for the surgical pathologist, 2nd edn. W B Saunders Co. 452

    Google Scholar 

  6. Lin F, Liu H (2014) Immunohistochemistry in undifferentiated neoplasm/tumor of uncertain origin. Arch Pathol Lab Med 138(12):1583–1610

    Article  PubMed  Google Scholar 

  7. Fizazi K et al (2015) Cancers of unknown primary site: ESMO clinical practice guidelines for diagnosis treatment and follow-up. Ann Oncol 26(5):v133–v138

    Article  PubMed  Google Scholar 

  8. Gatalica Z et al (2018) Comprehensive analysis of cancers of unknown primary for the biomarkers of response to immune checkpoint blockade therapy. Eur J Cancer 94:179–186

    Article  PubMed  Google Scholar 

  9. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  10. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378(9805):1812–1823

    Article  CAS  PubMed  Google Scholar 

  13. Goldhirsch A et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Metzger-Filho O et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30(15):1879–1887

    Article  CAS  PubMed  Google Scholar 

  15. Millis SZ et al (2015) Predictive biomarker profiling of >6000 breast cancer patients shows heterogeneity in TNBC with treatment implications. Clin Breast Cancer 15(6):473–481.e3

    Article  CAS  PubMed  Google Scholar 

  16. Traina TA et al (2018) Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J Clin Oncol 36(9):884–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaspers HC et al (2011) Androgen receptor-positive salivary duct carcinoma: a disease entity with promising new treatment options. J Clin Oncol 29(16):e473–e476

    Article  PubMed  Google Scholar 

  18. Arce-Salinas C et al (2016) Complete response of metastatic androgen receptor-positive breast cancer to bicalutamide: case report and review of the literature. J Clin Oncol 34(4):e21–e24

    Article  PubMed  Google Scholar 

  19. Bhargava R, Dabbs DJ (2017) Magee equations and oncotype DX®—a perspective. Breast Cancer Res Treat 164(1):245–246

    Article  PubMed  Google Scholar 

  20. Klein ME et al (2013) Prediction of the oncotype DX recurrence score: use of pathology-generated equations derived by linear regression analysis. Mod Pathol 26(5):658–664

    Article  PubMed  PubMed Central  Google Scholar 

  21. McCart Reed AE et al (2015) Invasive lobular carcinoma of the breast: morphology, biomarkers and ‘omics. Breast Cancer Res 17:12

    Article  PubMed  CAS  Google Scholar 

  22. Oberg K (2012) Neuroendocrine tumors of the digestive tract: impact of new classifications and new agents on therapeutic approaches. Curr Opin Oncol 24(4):433–440

    Article  PubMed  CAS  Google Scholar 

  23. Travis WD et al (2015) The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10(9):1243–1260

    Article  PubMed  Google Scholar 

  24. Miettinen M, Sarlomo-Rikala M, Lasota J (1999) Gastrointestinal stromal tumors: recent advances in understanding of their biology. Hum Pathol 30(10):1213–1220

    Article  CAS  PubMed  Google Scholar 

  25. Hornick JL, Fletcher CD (2002) Immunohistochemical staining for KIT (CD117) in soft tissue sarcomas is very limited in distribution. Am J Clin Pathol 117(2):188–193

    Article  PubMed  Google Scholar 

  26. Hirota S (1998) Gain-of-function mutations of C-KIT in human gastrointestinal stromal tumors. Science 279(5350):577–580

    Article  CAS  PubMed  Google Scholar 

  27. Joensuu H et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052–1056

    Article  CAS  PubMed  Google Scholar 

  28. Demetri GD (2001) Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 28(5 Suppl 17):19–26

    Article  CAS  PubMed  Google Scholar 

  29. Heinrich MC et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21(23):4342–4349

    Article  CAS  PubMed  Google Scholar 

  30. Wong SF (2005) Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther 27(6):684–694

    Article  CAS  PubMed  Google Scholar 

  31. Chung KY et al (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23(9):1803–1810

    Article  CAS  PubMed  Google Scholar 

  32. De Roock W et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762

    Article  PubMed  CAS  Google Scholar 

  33. Tejpar S et al (2012) Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 30(29):3570–3577

    Article  CAS  PubMed  Google Scholar 

  34. Shi W et al (2017) Pathway level alterations rather than mutations in single genes predict response to HER2-targeted therapies in the neo-ALTTO trial. Ann Oncol 28(1):128–135

    CAS  PubMed  Google Scholar 

  35. Altman DG et al (2012) Reporting recommendations for tumor marker prognostic studies (remark): explanation and elaboration. PLOS Medicine 9(5):e1001216

    Article  PubMed  PubMed Central  Google Scholar 

  36. Acs B et al (2017) Ki-67 as a controversial predictive and prognostic marker in breast cancer patients treated with neoadjuvant chemotherapy. Diagn Pathol 12(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Misiukiewicz K et al (2014) Controversies and role of HPV16 in recurrent/metastatic squamous cell cancers of the head and neck. Ann Oncol 25(8):1667–1668

    Article  CAS  PubMed  Google Scholar 

  38. Oldenhuis CN et al (2008) Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 44(7):946–953

    Article  CAS  PubMed  Google Scholar 

  39. Pritchard KI (2013) Endocrine therapy: is the first generation of targeted drugs the last? J Int Med 274(2):144–152

    Article  CAS  Google Scholar 

  40. Jordan VC (2009) A century of deciphering the control mechanisms of sex steroid action in breast and prostate cancer: the origins of targeted therapy and chemoprevention. Cancer Res 69(4):1243–1254

    Article  CAS  PubMed  Google Scholar 

  41. Gashaw I et al (2012) What makes a good drug target? Drug Discov Today 17(Suppl):S24–S30

    Article  CAS  PubMed  Google Scholar 

  42. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  43. Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20

    Article  CAS  PubMed  Google Scholar 

  44. Harries M, Smith I (2002) The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer 9(2):75–85

    Article  CAS  PubMed  Google Scholar 

  45. Wolff AC et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013

    Article  PubMed  Google Scholar 

  46. Parakh S et al (2017) Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat Rev 59:1–21

    Article  CAS  PubMed  Google Scholar 

  47. Yan M et al (2015) HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev 34(1):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bang YJ et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697

    Article  CAS  PubMed  Google Scholar 

  49. Clamon G et al (2005) Lack of trastuzumab activity in nonsmall cell lung carcinoma with overexpression of erb-B2: 39810: a phase II trial of Cancer and Leukemia Group B. Cancer 103(8):1670–1675

    Article  CAS  PubMed  Google Scholar 

  50. Sartore-Bianchi A et al (2016) Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 17(6):738–746

    Article  CAS  PubMed  Google Scholar 

  51. Cabel L et al (2018) Efficacy of histology-agnostic and molecularly-driven HER2 inhibitors for refractory cancers. Oncotarget 9(11):9741–9750

    Article  PubMed  PubMed Central  Google Scholar 

  52. Teplinsky E, Muggia F (2014) Targeting HER2 in ovarian and uterine cancers: challenges and future directions. Gynecol Oncol 135(2):364–370

    Article  CAS  PubMed  Google Scholar 

  53. Mertens F et al (2015) The emerging complexity of gene fusions in cancer. Nat Rev Cancer 15(6):371–381

    Article  CAS  PubMed  Google Scholar 

  54. Teixido C et al (2014) Concordance of IHC, FISH and RT-PCR for EML4-ALK rearrangements. Transl Lung Cancer Res 3(2):70–74

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin V et al (2015) ALK testing in lung adenocarcinoma: technical aspects to improve FISH evaluation in daily practice. J Thorac Oncol 10(4):595–602

    Article  CAS  PubMed  Google Scholar 

  56. Horn L, Pao W (2009) EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol 27(26):4232–4235

    Article  CAS  PubMed  Google Scholar 

  57. Ali SM et al (2016) Comprehensive genomic profiling identifies a subset of crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist 21(6):762–770

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dagogo-Jack I, Shaw AT (2016) Screening for ALK rearrangements in lung cancer: time for a new generation of diagnostics? Oncologist 21(6):662–663

    Article  PubMed  PubMed Central  Google Scholar 

  59. van der Wekken AJ et al (2017) Dichotomous ALK-IHC is a better predictor for ALK inhibition outcome than traditional ALK-FISH in advanced non-small cell lung cancer. Clin Cancer Res 23(15):4251–4258

    Article  PubMed  CAS  Google Scholar 

  60. Conde E et al (2016) Profile of ventana ALK (D5F3) companion diagnostic assay for non-small-cell lung carcinomas. Expert Rev Mol Diagn 16(6):707–713

    Article  CAS  PubMed  Google Scholar 

  61. Thorne-Nuzzo T et al (2017) A sensitive ALK immunohistochemistry companion diagnostic test identifies patients eligible for treatment with crizotinib. J Thorac Oncol 12(5):804–813

    Article  PubMed  Google Scholar 

  62. Bergethon K et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang R et al (2012) RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 30(35):4352–4359

    Article  CAS  PubMed  Google Scholar 

  64. Amatu A, Sartore-Bianchi A, Siena S (2016) NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1(2):e000023

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shan L et al (2015) Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR. PLoS ONE 10(3):e0120422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang T et al (2015) An evaluation and recommendation of the optimal methodologies to detect RET gene rearrangements in papillary thyroid carcinoma. Genes Chromosom Cancer 54(3):168–176

    Article  CAS  PubMed  Google Scholar 

  67. Hechtman JF et al (2017) Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol 41(11):1547–1551

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sholl LM et al (2013) ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol 37(9):1441–1449

    Article  PubMed  Google Scholar 

  69. Cha YJ et al (2014) Screening of ROS1 rearrangements in lung adenocarcinoma by immunohistochemistry and comparison with ALK rearrangements. PLoS ONE 9(7):e103333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yoshida A et al (2014) Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol 27(5):711–720

    Article  CAS  PubMed  Google Scholar 

  71. Drilon A et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smith KM et al (2018) Antitumor activity of entrectinib, a Pan-TRK, ROS1, and ALK inhibitor, in ETV6-NTRK3-positive acute myeloid leukemia. Mol Cancer Ther 17(2):455–463

    Article  CAS  PubMed  Google Scholar 

  73. Gatalica Z et al (2019) Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 32(1):147–153

    Article  PubMed  CAS  Google Scholar 

  74. Murphy DA et al (2017) Detecting gene rearrangements in patient populations through a 2-step diagnostic test comprised of rapid IHC enrichment followed by sensitive next-generation sequencing. Appl Immunohistochem Mol Morphol 25(7):513–523

    Article  CAS  PubMed  Google Scholar 

  75. French CA (2010) Demystified molecular pathology of NUT midline carcinomas. J Clin Pathol 63(6):492–496

    Article  PubMed  Google Scholar 

  76. French CA et al (2014) NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov 4(8):928–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gatalica Z et al (2018) NUTM1 gene rearranged neoplasia. Mod Pathol 31(2. abst. 1944):698–699

    Google Scholar 

  78. Cankovic M et al (2013) The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J Mol Diagn 15(5):539–555

    Article  CAS  PubMed  Google Scholar 

  79. Ferriss JS et al (2010) Temozolomide in advanced and recurrent uterine leiomyosarcoma and correlation with o6-methylguanine DNA methyltransferase expression: a case series. Int J Gynecol Cancer 20(1):120–125

    Article  PubMed  Google Scholar 

  80. Guo Z, Lloyd RV (2016) Use of monoclonal antibodies to detect specific mutations in formalin-fixed, paraffin-embedded tissue sections. Hum Pathol 53:168–177

    Article  CAS  PubMed  Google Scholar 

  81. Rossi G et al (2017) Does immunohistochemistry represent a robust alternative technique in determining drugable predictive gene alterations in non-small cell lung cancer? Curr Drug Targets 18(1):13–26

    Article  CAS  PubMed  Google Scholar 

  82. Seo AN et al (2014) Novel EGFR mutation-specific antibodies for lung adenocarcinoma: highly specific but not sensitive detection of an E746_A750 deletion in exon 19 and an L858R mutation in exon 21 by immunohistochemistry. Lung Cancer 83(3):316–323

    Article  PubMed  Google Scholar 

  83. Bellevicine C et al (2015) Performance of EGFR mutant-specific antibodies in different cytological preparations: a validation study. Cytopathology 26(2):99–105

    Article  CAS  PubMed  Google Scholar 

  84. Hyman DM et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373(8):726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Diamond EL et al (2018) Vemurafenib for BRAF V600-mutant Erdheim-Chester disease and langerhans cell histiocytosis: analysis of data from the histology-independent, phase 2 open-label VE-BASKET study. JAMA Oncol 4(3):384–388

    Article  PubMed  Google Scholar 

  86. Falchook GS et al (2013) BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 4(2):310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gatalica Z et al (2016) Concordance of anti-BRAF p. V600E immunohistochemistry with BRAF gene sequence in solid tumors carrying diverse BRAF mutations. Mod Pathol 29(2):454A

    Google Scholar 

  88. Gatalica Z et al (2015) BRAF mutations are potentially targetable alterations in a wide variety of solid cancers. Eur J Cancer 51(Suppl. 3):S31

    Article  Google Scholar 

  89. Gatalica Z et al (2015) Disseminated histiocytoses biomarkers beyond BRAFV600E: frequent expression of PD-L1. Oncotarget 6(23):19819–19825

    Article  PubMed  PubMed Central  Google Scholar 

  90. Huss S et al (2017) Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wild-type GISTs are rare events. Hum Pathol 62:206–214

    Article  CAS  PubMed  Google Scholar 

  91. Parslow AC et al (2016) Antibody-drug conjugates for cancer therapy. Biomedicines 4(3)

    Article  PubMed Central  CAS  Google Scholar 

  92. Bardia A et al (2017) Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol 35(19):2141–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rudin CM et al (2017) Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 18(1):42–51

    Article  CAS  PubMed  Google Scholar 

  94. Martin LP et al (2017) Characterization of folate receptor alpha (FRalpha) expression in archival tumor and biopsy samples from relapsed epithelial ovarian cancer patients: a phase I expansion study of the FRalpha-targeting antibody-drug conjugate mirvetuximab soravtansine. Gynecol Oncol 147(2):402–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Olaussen KA et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983–991

    Article  CAS  PubMed  Google Scholar 

  96. Braun MS et al (2008) Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 26(16):2690–2698

    Article  CAS  PubMed  Google Scholar 

  97. Von Hoff DD et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28(33):4877–4883

    Article  CAS  Google Scholar 

  98. Topalian SL et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Agilent (2018) PD-L1 IHC 22C3 pharmDx testing for gastric or GEJ adenocarcinoma. pharmDx 2018 [cited 2018 05/29/2018]. Available from: https://www.agilent.com/en-us/products/pharmdx/pd-l1-ihc-22c3-pharmdx-testing-for-gastric-gej

  100. Hudelist G et al (2006) Her-2/neu and EGFR tyrosine kinase activation predict the efficacy of trastuzumab-based therapy in patients with metastatic breast cancer. Int J Cancer 118(5):1126–1134

    Article  CAS  PubMed  Google Scholar 

  101. David K, Juhl H (2015) Immunohistochemical detection of phosphoproteins and cancer pathways. Handbook of practical immunohistochemistry. Springer, New York

    Book  Google Scholar 

  102. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  103. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  104. Wu X et al (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5(4):322–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Domenyuk V et al (2018) Poly-ligand profiling differentiates trastuzumab-treated breast cancer patients according to their outcomes. Nat Commun 9(1):1219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Rittmeyer A et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265

    Article  PubMed  Google Scholar 

  107. Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  108. Herbst RS et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  109. Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rosenberg JE et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387(10031):1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Massard C et al (2016) Safety and efficacy of durvalumab (medi4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 34(26):3119–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Powles T et al (2017) Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 3(9):e172411

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bellmunt J et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11):1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sharma P et al (2017) Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 18(3):312–322

    Article  CAS  PubMed  Google Scholar 

  115. Apolo AB et al (2017) Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol 35(19):2117–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  117. Seiwert TY et al (2016) Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17(7):956–965

    Article  CAS  PubMed  Google Scholar 

  118. Ferris RL et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Motzer RJ et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kaufman HL et al (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17(10):1374–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fuchs CS et al (2018) Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical keynote-059 trial. JAMA Oncol 4(5):e180013

    Article  PubMed  PubMed Central  Google Scholar 

  122. Schellens JHM et al (2018) Pembrolizumab for previously treated advanced cervical squamous cell cancer: preliminary results from the phase 2 KEYNOTE-158 study. J Clin Oncol 15:5514

    Google Scholar 

  123. El-Khoueiry AB et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389(10088):2492–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Gatalica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gatalica, Z., Feldman, R., Vranić, S., Spetzler, D. (2019). Immunohistochemistry-Enabled Precision Medicine. In: Von Hoff, D., Han, H. (eds) Precision Medicine in Cancer Therapy . Cancer Treatment and Research, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-16391-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16391-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16390-7

  • Online ISBN: 978-3-030-16391-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics