Skip to main content

Abstract

The primary heart field, secondary heart field, cardiac neural crest, and proepicardium are the four major embryonic regions involved in the process of vertebrate heart development (Fig. 1). They each make an important contribution to overall cardiac development, which occurs with complex developmental timing and regulation. This chapter describes how these regions interact to form the final structure of the heart in relationship to the generalized developmental timeline of human embryology (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Srivastava, D. and Olson, E.N. (2000) A genetic blueprint for cardiac development. Nature. 407, 221–226.

    Article  PubMed  CAS  Google Scholar 

  2. Kelly, R.G., Brown, N.A., and Buckingham, M.E. (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 1, 435–440.

    Article  PubMed  CAS  Google Scholar 

  3. Mjaatvedt, C.H., Nakaoka, T., Moreno-Rodriguez, R., et al. (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 238, 97–109.

    Article  PubMed  CAS  Google Scholar 

  4. Waldo, K.L., Kumiski, D.H., Wallis, K.T., et al. (2001) Conotruncal myocardium arises from a secondary heart field. Development. 128, 3179–3188.

    PubMed  CAS  Google Scholar 

  5. Kelly, R.G. and Buckingham, M.E. (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet. 18, 210–216.

    Article  PubMed  CAS  Google Scholar 

  6. Hatada, Y. and Stern, C.D. (1994) A fate map of the epiblast of the early chick embryo. Development. 120, 2879–2889.

    PubMed  CAS  Google Scholar 

  7. Yutzey, K.E. and Kirby, M.L. (2002) Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Dev Dyn. 223, 307–320.

    Article  PubMed  Google Scholar 

  8. Sherman, L.S., Potter, S.S., and Scott, W.J. (eds.) (2001) Human Embryology, 3rd Ed. Churchill Livingstone, New York, NY.

    Google Scholar 

  9. Garcia-Martinez, V. and Schoenwolf, G.C. (1993) Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol. 159, 706–719.

    Article  PubMed  CAS  Google Scholar 

  10. Psychoyos, D. and Stern, C.D. (1996) Fates and migratory routes of primitive streak cells in the chick embryo. Development. 122, 1523–1534.

    PubMed  CAS  Google Scholar 

  11. DeHaan, R.L. (1963) Organization of the cardiogenic plate in the early chick embryo. Acta Embryol Morphol Exp. 6, 26–38.

    Google Scholar 

  12. Ehrman, L.A. and Yutzey, K.E. (1999) Lack of regulation in the heart forming region of avian embryos. Dev Biol. 207, 163–175.

    Article  PubMed  CAS  Google Scholar 

  13. Harvey, R.P. and Rosenthal, N. (eds.) (1998) Heart Development. Academic Press, New York, NY.

    Google Scholar 

  14. Kirby, M.L. (2002) Molecular embryogenesis of the heart. Pediatr Dev Pathol. 5, 516–543.

    Article  PubMed  Google Scholar 

  15. Lohr, J.L. and Yost, J.H. (2000) Vertebrate model systems in the study of early heart development: xenopus and zebrafish. Am J Med Genet. 97, 248–257.

    Article  PubMed  CAS  Google Scholar 

  16. Kirby, M.L., Gale, T.F., and Stewart, D.E. (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science. 220, 1059–1061.

    Article  PubMed  CAS  Google Scholar 

  17. Kirby, M.L. and Stewart, D.E. (1983) Neural crest origin of cardiac ganglion cells in the chick embryo: identification and extirpation. Dev Biol. 97, 433–443.

    Article  PubMed  CAS  Google Scholar 

  18. Kirby, M.L., Turnage, K.L., 3rd, and Hays, B.M. (1985) Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat Rec. 213, 87–93.

    Article  PubMed  CAS  Google Scholar 

  19. Bockman, D.E., Redmond, M.E., and Kirby, M.L. (1989) Alteration of early vascular development after ablation of cranial neural crest. Anat Rec. 225, 209–217.

    Article  PubMed  CAS  Google Scholar 

  20. Waldo, K., Miyagawa-Tomita, S., Kumiski, D., and Kirby, M.L. (1998) Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol. 196, 129–144.

    Article  PubMed  CAS  Google Scholar 

  21. Waldo, K.L., Lo, C.W., and Kirby, M.L. (1999) Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol. 208, 307–323.

    Article  PubMed  CAS  Google Scholar 

  22. Komiyama, M., Ito, K., and Shimada, Y. (1987) Origin and development of the epicardium in the mouse embryo. Anat Embryol. 176, 183–189.

    Article  PubMed  CAS  Google Scholar 

  23. Noden, D.M., Poelmann, R.E., and Gittenberger-de Groot, A.C. (1995) Cell origins and tissue boundaries during outflow tract development. Trends Cardiovasc Med. 5, 69–75.

    Article  Google Scholar 

  24. Mikawa, T. and Gourdie, R.G. (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 174, 221–232.

    Article  PubMed  CAS  Google Scholar 

  25. Noden, D.M. (1990) Origins and assembly of avian embryonic blood vessels. Ann NY Acad Sci. 588, 236–249.

    Article  PubMed  CAS  Google Scholar 

  26. Gittenberger-de Groot, A.C., Vrancken Peeters, M.P., Bergwerff, M., Mentink, M.M., and Poelmann, R.E. (2000) Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 87, 969–971.

    PubMed  CAS  Google Scholar 

  27. Hood, L.C. and Rosenquist, T.H. (1992) Coronary artery development in the chick: origin and development of smooth muscle cells, and effects of neural crest ablation. Anat Rec. 234, 291–300.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson, P.A.W. (2000) Developmental cardiac physiology and myocardial function, In Pediatric Cardiovascular Medicine (Moller, J.H. and Hoffman, J.I.E., eds.), Churchill Livingstone, New York, NY, pp. 35–57.

    Google Scholar 

  29. Huttenbach, Y., Ostrowski, M.L., Thaller, D., and Kim, H.S. (2001) Cell proliferation in the growing human heart: MIB-1 immunostaining in preterm and term infants at autopsy. Cardiovasc Pathol. 10, 119–123.

    Article  PubMed  CAS  Google Scholar 

  30. Kern, F.H., Bengur, A.R., and Bello, E.A. (1996) Developmental cardiac physiology, In Textbook of Pediatric Intensive Care, 3rd Ed. (Rogers, M.C., ed.), Lippincott, Williams, and Wilkins, Baltimore, MD, pp. 397–423.

    Google Scholar 

  31. Kim, H.D., Kim, D.J., Lee, I.J., Rah, B.J., Sawa, Y., and Schaper, J. (1992) Human fetal heart development after mid-term: morphometry and ultrastructural study. J Mol Cell Cardiol. 24, 949–965.

    Article  PubMed  CAS  Google Scholar 

  32. Beltrami, A.P., Urbanek, K., Kajstura, J., et al. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 344, 1750–1757.

    Article  PubMed  CAS  Google Scholar 

  33. Vick, G.W. and Fisher, D.A. (1998) Cardiac metabolism, in The Science and Practice of Pediatric Cardiology, 2nd ed. (Garson, A.J., Bricker, T.J., Timothy, J., Fisher, D.J., and Neish, S.R., eds.), Williams and Wilkens, Baltimore, MD, pp. 155–169.

    Google Scholar 

  34. Opie, L.H. (1991) Carbohydrates and lipids, In The Heart: Physiology and Metabolism, 2nd Ed. (Opie, L.H., ed.), Raven Press, New York, NY, pp. 208–246.

    Google Scholar 

  35. Price, K.M., Littler, W.A., and Cummins, P. (1980) Human atrial and ventricular myosin light-chains subunits in the adult and during development. Biochem J. 191, 571–580.

    PubMed  CAS  Google Scholar 

  36. Morano, M., Zacharzowski, U., Maier, M., et al. (1996) Regulation of human heart contractility by essential myosin light chain isoforms. J Clin Invest. 98, 467–473.

    PubMed  CAS  Google Scholar 

  37. Morano, I. (1999) Tuning the human heart molecular motors by myosin light chains. J Mol Med. 77, 544–555.

    Article  PubMed  CAS  Google Scholar 

  38. Boheler, K.R., Carrier, L., de la Bastie, D., et al. (1991) Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J Clin Invest. 88, 323–330.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson, P.A.W., Kleinman, C.S., Lister, G., and Talner, N. (1998) Cardiovascular function during normal fetal and neonatal development and with hypoxic stress, in Fetal and Neonatal Physiology, 2nd Ed. (Polin, R.A. and Fox, W.W., eds.), Saunders, Philadelphia, PA, pp. 837–890.

    Google Scholar 

  40. Hewett, T.E., Grupp, I.L., Grupp, G., and Robbins, J. (1994) Alpha-skeletal actin is associated with increased contractility in the mouse heart. Circ Res. 74, 740–746.

    PubMed  CAS  Google Scholar 

  41. Muthuchamy, M., Grupp, I.L., Grupp, G., et al. (1995) Molecular and physiological effects of overexpressing striated muscle beta-tropomyosin in the adult murine heart. J Biol Chem. 270, 30,593–30,603.

    Article  PubMed  CAS  Google Scholar 

  42. Palmiter, K.A., Kitada, Y., Muthuchamy, M., Wieczorek, D.F., and Solaro, R.J. (1996) Exchange of beta-for alpha-tropomyosin in hearts of transgenic mice induces changes in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation. J Biol Chem. 271, 11,611–11,614.

    Article  PubMed  CAS  Google Scholar 

  43. Muthuchamy, M., Boivin, G.P., Grupp, I.L., and Wieczorek, D.F. (1998) Beta-tropomyosin overexpression induces severe cardiac abnormalities. J Mol Cell Cardiol. 30, 1545–1557.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, S.H., Kim, H.S., and Lee, M.M. (2002) Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat. Circ J. 66, 959–964.

    Article  PubMed  CAS  Google Scholar 

  45. Hunkeler, N.M., Kullman, J., and Murphy, A.M. (1991) Troponin I isoform expression in human heart. Circ Res. 69, 1409–1414.

    PubMed  CAS  Google Scholar 

  46. Purcell, I.F., Bing, W., and Marston, S.B. (1999) Functional analysis of human cardiac troponin by the in vitro motility assay: comparison of adult, foetal and failing hearts. Cardiovasc Res. 43, 884–891.

    Article  PubMed  CAS  Google Scholar 

  47. Morimoto, S. and Goto, T. (2000) Role of troponin I isoform switching in determining the pH sensitivity of Ca(2+) regulation in developing rabbit cardiac muscle. Biochem Biophys Res Commun. 267, 912–917.

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka, H., Sekine, T., Nishimaru, K., and Shigenobu, K. (1998) Role of sarcoplasmic reticulum in myocardial contraction of neonatal and adult mice. Comp Biochem Physiol A Mol Integr Physiol. 120, 431–438.

    Article  PubMed  CAS  Google Scholar 

  49. Buchorn, R., Hulpke-Wette, M., Ruschewski, W., et al. (2002) Beta-receptor downregulation in congenital heart disease: a risk factor for complications after surgical repair? Ann Thorac Surg. 73, 610–613.

    Article  Google Scholar 

  50. Schiffmann, H., Flesch, M., Hauseler, C., Pfahlberg, A., Bohm, M., and Hellige, G. (2002) Effects of different inotropic interventions on myocardial function in the developing rabbit heart. Basic Res Cardiol. 97, 76–87.

    Article  PubMed  CAS  Google Scholar 

  51. Sun, L.S. (1999) Regulation of myocardial beta-adrenergic receptor function in adult and neonatal rabbits. Biol Neonate. 76, 181–192.

    Article  PubMed  CAS  Google Scholar 

  52. Dees, E. and Baldwin, H.S. (2002) New frontiers in molecular pediatric cardiology. Curr Opin Pediatr. 14, 627–633.

    Article  PubMed  Google Scholar 

  53. McFadden, D.G. and Olson, E.N. (2002) Heart development: learning from mistakes. Curr Opin Genet Dev. 12, 328–335.

    Article  PubMed  CAS  Google Scholar 

  54. Martinsen, B.J., Groebner, N.J., Frasier, A.J., and Lohr, J.L. (2003) Expression of cardiac neural crest and heart genes isolated by modified differential display. Gene Expr Patterns. 3, 407–411.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Martinsen, B.J., Lohr, J.L. (2005). Cardiac Development. In: Iaizzo, P.A. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-59259-835-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-835-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-443-2

  • Online ISBN: 978-1-59259-835-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics