Skip to main content

Abstract

This chapter is a review of commonly utilized monitoring techniques performed to assess the function of the general cardiovascular system. Specifically, means to assess arterial blood pressure, central venous pressure, pulmonary artery pressure, mixed venous oxygen saturation, cardiac output, pressure-volume loops, and Frank-Starling curves are described. Basic physiological principals underlying cardiac function are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gardner, R.M. (1996) Accuracy and reliability of disposable pressure transducers coupled with modern monitors. Crit Care Med. 24, 879–882.

    Article  PubMed  CAS  Google Scholar 

  2. Skeehan, T.M. and Thys, D.M. (1995) Monitoring of the cardiac surgical patient, in A Practical Approach to Cardiac Anesthesia, 2nd Ed. (Hensley, F.A. and Martin, D.E., eds.), Little, Brown, and Company, Boston, MA, p. 102.

    Google Scholar 

  3. Gorback, M.S. (1988) Considerations in the interpretation of systemic pressure monitoring, in Complications in Critical Care Medicine (Lumb, P.D. and Bryan-Brown, C.W., eds.), Year Book, Chicago, IL, p. 296.

    Google Scholar 

  4. Shasby, D.M., Dauber, I.M., Pfister, S., et al. (1980) Swan-Ganz catheter location and left atrial pressure determine the accuracy of wedge pressure when positive end expiratory pressure is used. Chest. 80, 666–670.

    Article  Google Scholar 

  5. Snyder, J.V. and Carroll, G.C. (1982) Tissue oxygenation: a physiologic approach to a clinical problem. Curr Probl Surg. 19, 650.

    Article  PubMed  CAS  Google Scholar 

  6. Stanley, T.E. and Reves, J.G. (1994) Cardiovascular monitoring, in Anesthesia, 4th ed. (Miller, R.D., ed.), Churchill Livingstone, Boston, MA, p. 1167.

    Google Scholar 

  7. Swan, H.J.C., Ganz, W., Forrester, J., Marcus, H., Diamon, G., and Chonette, D. (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 283, 447–451.

    Article  PubMed  CAS  Google Scholar 

  8. American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization (2003) Practice guidelines for pulmonary artery catheterization. Anesthesiology. 99, 989–1014.

    Google Scholar 

  9. West, J.B., Dollery, C.T., and Naimark, A. (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 19, 713–724.

    PubMed  CAS  Google Scholar 

  10. Wesseling, K.H. (1996) Finger arterial pressure measurement with Finapres. Z Kardiol. 3, 38–44.

    Google Scholar 

  11. Brandstetter, R.D., Grant, G.R., Estilo, M., Rahim, R., Sing, K., and Gitler, B. (1998) Swan-Ganz catheter: misconceptions, pitfalls, and incomplete user knowledge-an identified trilogy in need of correction. Heart Lung. 27, 218–222.

    Article  PubMed  CAS  Google Scholar 

  12. Wittnich, C., Trudel, J., Zidulka, A., and Chiu, R.C. (1986) Misleading “pulmonary wedge pressure” after pneumonectomy: its importance in postoperative fluid therapy. Ann Thorac Surg. 42, 192–196.

    Article  PubMed  CAS  Google Scholar 

  13. Van Aken, H. and Vandermeersch, E. (1988) Reliability of PCWP as an index for left ventricular preload. Br J Anaesth. 60, 85–95.

    Google Scholar 

  14. Stanley, T.E. and Reves, J.G. (1994) Cardiovascular monitoring, in Anesthesia, 4th Ed. (Miller, R.D., ed.), Churchill Livingstone, Boston, MA, pp. 1184–1185.

    Google Scholar 

  15. Fegler, G. (1954) Measurement of cardiac output in anesthetized animals by thermodilution method. Q J Exp Physiol. 39, 153.

    CAS  Google Scholar 

  16. Pearl, R.G.B., Rosenthal, M.H., Mielson, L., et al. (1986) Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology. 64, 798.

    PubMed  CAS  Google Scholar 

  17. Reich, D.L., Moskowitz, D.M., and Kaplan, J.A. (1999) Hemodynamic monitoring, in Cardiac Anesthesia, 4th Ed. (Kaplan, J.A., Reich, D.L., and Konstaelt, S.N., eds.), Saunders, Philadelphia, PA.

    Google Scholar 

  18. Burchell, S.A., Yu, M., Takiguchi, S.A., Ohta, R.M., and Myers, S.A. (1997) Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med. 25, 388–391.

    Article  PubMed  CAS  Google Scholar 

  19. Poli d Figueiredo, L.F., Malbouisson, L.M.S., Varicoda, E.Y., et al. (1999) Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma. 47, 288–293.

    Google Scholar 

  20. Mihaljevi, T., vonSegesser, L.K., Tonz, M., et al. (1995) Continuous versus bolus thermodilution cardiac output measurements: a comparative study. Crit Care Med. 23, 944–949.

    Article  Google Scholar 

  21. Mihm, F.G., Gettinger, A., Hanson, C.W., et al. (1998) A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med. 26, 1346–1350.

    Article  PubMed  CAS  Google Scholar 

  22. Della, R.G., Costa, M.G., Pompei, L., et al. (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth. 88, 350–356.

    Article  Google Scholar 

  23. Pamley, C.L. and Pousman, R.M. (2002) Noninvasive cardiac output monitoring. Curr Opin Anaesthesiol. 15, 675–680.

    Article  Google Scholar 

  24. Christensen, P., Clemensen, P., Andersen, P.K., et al. (2000) Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow. Crit Care Med. 28, 51–56.

    Article  PubMed  CAS  Google Scholar 

  25. Imhoff, M., Lehner, J.H., and Lohlein, D. (2000) Noninvasive wholebody electrical bioempedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med. 28, 2812–2818.

    Article  PubMed  CAS  Google Scholar 

  26. Shoemaker, W.C., Wo, C.C., Bishop, M.H., et al. (1994) Multicenter trial of a new thoracic electrical bioempedance device for cardiac output estimation. Crit Care Med. 22, 1907–1912.

    Article  PubMed  CAS  Google Scholar 

  27. Linton, R.A., Band, D.M., and Haire, K.M. (1994) A new method of measuring cardiac output in main using lithium dilution. Br J Anaesth. 71, 262–266.

    Article  Google Scholar 

  28. Linton, R., Band, D., O’Brian, T., et al. (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med. 25, 1767–1768.

    Article  Google Scholar 

  29. Kurita, T., Morita, K., Kato, S., et al. (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth. 79, 770–775.

    PubMed  CAS  Google Scholar 

  30. Rivers, E., Nguyen, B., Havstad, S., et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 345, 1368–1377.

    Article  PubMed  CAS  Google Scholar 

  31. Band, D.M., Linton, R.A., Jonas, M.M., et al. (1997) The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol. 498, 225–229.

    PubMed  CAS  Google Scholar 

  32. Shoemaker, W.C. (2002) New approaches to trauma management using severity of illness and outcome prediction based on noninvasive hemodynamic monitoring. Surg Clin North Am. 82, 245–255.

    Article  PubMed  Google Scholar 

  33. Shoemaker, W.C., Wo, C.C., Chan, L., et al. (2001) Outcome prediction of emergency patients by noninvasive hemodynamic monitoring. Chest. 120, 528–537.

    Article  PubMed  CAS  Google Scholar 

  34. Drazner, M.H., Thompson, B., Rosenberg, P.B., et al. (2002) Comparisons of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol. 89, 993–995.

    Article  PubMed  Google Scholar 

  35. Binder, J.C. and Parkin, W.G. (2001) Non-invasive cardiac output determination: comparison of a new partial-rebreathing technique with themodilution. Anaesth Intensive Care. 28, 427–430.

    Google Scholar 

  36. Maxwell, R.A., Gibson, J.B., Slade, J.B., et al. (2001) Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma. 51, 849–853.

    PubMed  CAS  Google Scholar 

  37. Tachibana, K., Imanaka, H., Miyano, H., et al. (2002) Effect of ventilatory settings on accuracy of cardiac output measurement using partial CO2 rebreathing. Anesthesiology. 96, 96–102.

    Article  PubMed  Google Scholar 

  38. Botero, M. and Lobato, E.B. (2001) Advances in noninvasive cardiac output monitoring: an update. J Cardiothorac Vasc Anesth. 15, 631–640.

    Article  PubMed  CAS  Google Scholar 

  39. Kotake, Y., Moriyama, K., Innami, Y., et al. (2003) Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology. 99, 283–288.

    Article  PubMed  Google Scholar 

  40. Snyder, J.V. and Carroll, G.C. (1982) Tissue oxygenation: a physiologic approach to a clinical problem. Curr Probl Surg. 19, 650.

    Article  PubMed  CAS  Google Scholar 

  41. Keech, J. and Reed, R.L., II. (2003) Reliability of mixed venous oxygen saturation as an indicator of the oxygen extraction ratio demonstrated by a large patient data set. J Trauma. 54, 236–241.

    Article  PubMed  Google Scholar 

  42. Jain, A., Shroff, S.G., Jnicki, J.S., et al. (1991) Relation between venous oxygen saturation and cardiac index. Nonlinearity and normalization for oxygen uptake and hemoglobin. Chest. 99, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  43. Inomata, S., Nishikawa, T., and Taguchi, M. (1994) Continuous monitoring of mixed venous oxygen saturation for detecting alterations in cardiac output after discontinuation of cardiopulmonary bypass. Br J Anaesth. 72, 11–16.

    Article  PubMed  CAS  Google Scholar 

  44. Rivers, E., Nguyen, B., Vastad, S., et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 345, 1368–1377.

    Article  PubMed  CAS  Google Scholar 

  45. Kraft, P., Steltzer, H., Hiesmayr, M., et al. (1993) Mixed venous oxygen saturation in critically ill septic shock patients: the role of defined events. Chest. 103, 900–906.

    Article  Google Scholar 

  46. Waller, J.L., Kaplan, J.A., Bauman, L.I., et al. (1982) Clinical evaluation of a new fiberoptic catheter oximeter during cardiac surgery. Anesthe Analg. 61, 676–679.

    CAS  Google Scholar 

  47. Vedrinne, C., Bastien, O., De Varax, R., et al. (1997) Predictive factors for usefulness of fiberoptic pulmonary artery catheter for continuous oxygen saturation in mixed venous blood monitoring in cardiac surgery. Anesth Analg. 85, 2–10.

    Article  PubMed  CAS  Google Scholar 

  48. Goldman, R.H., Klughaupt, M., Metcalf, T., et al. (1968) Measured central venous oxygen saturation in patients with myocardial infarction. Circulation. 38, 941–946.

    PubMed  CAS  Google Scholar 

  49. Berridye, J.C. (1992) Influence of cardiac output on correlation between mixed venous and central venous oxygen saturation. Br J Anaesth. 89, 409–410.

    Article  Google Scholar 

  50. Davies, G.G., Mendehall, J., and Symrey, T. (1988) Measurement of right atrial oxygen saturation by fiberoptic oximetry accurately reflects mixed venous oxygen saturation in swine. J Clin Monit. 4, 99–102.

    Article  PubMed  CAS  Google Scholar 

  51. Rivers, E.P., Ander, D.S., and Powell, D. (2001) Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 7, 204–211.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, J., Wright, F., Barber, R., et al. (1972) Central venous oxygen saturation in shock: a study in man. Anesthesiology. 36, 472–478.

    Article  PubMed  CAS  Google Scholar 

  53. Scheinman, M.M., Brown, M.A., and Rapaport, E. (1969) Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation. 40, 165–172.

    PubMed  CAS  Google Scholar 

  54. Edwards, J.D. and Mayall, R.M. (1998) Importance of the sampling site for measurement of mixed venous oxygen saturation in shock. Crit Care Med. 26, 1356–1360.

    Article  PubMed  CAS  Google Scholar 

  55. Ratcliffe, M.B., Gupta, K.B., Streicher, T.J., et al. (1995) Use of sonomicrometry and multidimensional scaling to determine the three-dimensional coordinates of multiple cardiac locations: feasibility and initial implementation. IEEE Trans Biomed Eng. 42, 587–597.

    Article  PubMed  CAS  Google Scholar 

  56. Gorman, J.H., III, Gupta, K.B., Streicher, J.T., et al. (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg. 112, 712–725.

    Article  PubMed  Google Scholar 

  57. Meyer, S. and Wolf, P.D. (1997) Application of sonomicrometry and multidimensional scaling to cardiac catheter tracking. IEEE Trans Biomed Eng. 44, 1061–1067.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Loushin, M.K., Iaizzo, P.A. (2005). Mechanical Aspects of Cardiac Performance. In: Iaizzo, P.A. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-59259-835-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-835-9_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-443-2

  • Online ISBN: 978-1-59259-835-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics