Skip to main content

The Effects of Anesthetic Agents on Cardiac Function

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Today, anesthesia is considered necessary for many types of surgeries and procedures. In general, anesthesia may provide analgesia, amnesia, hypnosis, and muscle relaxation. The depth of administered anesthesia can vary from minimal sedation to general anesthesia (Table 1). General anesthesia typically causes significant alterations in hemodynamics, especially during induction of anesthesia. Importantly, both inhalational and intravenous anesthetics can affect cardiovascular performance; this includes effects on cardiac output, heart rate, systemic vascular resistance, cardiac conduction system, myocardial contractility, coronary blood flow, or blood pressures. Yet, the choice of inhalational and intravenous anesthetics is typically associated with the patient’s underlying cardiovascular status, such as the presence of heart failure and hypovolemia. The primary goal of this chapter is to make commonly employed methodologies and anesthetics more familiar to the reader, with particular attention to the potential influences on the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Society of Anesthesiologists (October 2003) ASA Standards, Guidelines and Statements. American Society of Anesthesiologists, Park Ridge, IL.

    Google Scholar 

  2. Eger, E.I., II (1974) Uptake of inhaled anesthetics: the alveolar to impaired anesthetic difference, in Anesthetic Uptake and Action (Eger, E.I., II, ed.), Williams and Wilkins, Baltimore, MD, p. 77.

    Google Scholar 

  3. Stevens, W., Cromwell, T., Halsey, M., et al. (1971) The cardiovascular effects of a new inhalation anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology. 35, 8–16.

    PubMed  CAS  Google Scholar 

  4. Eger, E.I. II, Smith, N., and Stoelting, R., et al. (1970) Cardiovascular effects of halothane in man. Anesthesiology. 32, 396–489.

    Article  PubMed  Google Scholar 

  5. Weiskopf, R., Cahalan, M., Eger, E.I., II, et al. (1991) Cardiovascular actions of desflurane in normocarbic volunteers. Anesth Analg. 73, 143–156.

    PubMed  CAS  Google Scholar 

  6. Holaday, D. and Smith, F. (1981) Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology. 54, 100–106.

    Article  PubMed  CAS  Google Scholar 

  7. Pavlin, E.G. and Su, J.Y. (1994) Cardiopulmonary pharmacology, in Anesthesia (Miller, R, ed.), Churchill Livingstone, Philadelphia, PA, p. 145.

    Google Scholar 

  8. Muzi, M. and Ebert, T.J. (1995) A comparison of baroreflex sensitivity during isoflurane and desflurane anesthesia in humans. Anesthesiology. 82, 919–925.

    Article  PubMed  CAS  Google Scholar 

  9. Duke, P.C., Townes, D., and Wade, J.G. (1977) Halothane depresses baroreflex control of heart rate in man. Anesthesiology. 46, 184–187.

    Article  PubMed  CAS  Google Scholar 

  10. Kotrly, K.J., Ebert, T.J., Vucins, E., et al. (1984) Baroreceptor reflex control of heart rate during isoflurane anesthesia in humans. Anesthesiology. 60, 173–179.

    Article  PubMed  CAS  Google Scholar 

  11. Atlee, J.L. and Bosnjak, Z.J. (1990) Mechanisms for cardiac dysrhythmias during anesthesia. Anesthesiology. 72, 347–374.

    Article  PubMed  Google Scholar 

  12. Navarro, R., Weiskopf, R.B., Moore, M.A., et al. (1994) Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology. 80, 545–549.

    Article  PubMed  CAS  Google Scholar 

  13. Moore, M.A., Weiskopf, R.B., Eger, E.I., et al. (1994) Arrhythmogenic doses of epinephrine are similar during desflurane or isoflurane anesthesia in humans. Anesthesiology. 79, 943–947.

    Google Scholar 

  14. Johnston, R.R., Eger, E.I., and Wilson, C. (1976) A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg. 55, 709–712.

    Article  PubMed  CAS  Google Scholar 

  15. Crystal, G.J., Khoury, E., Gurevicius, J., and Salem, M.R. (1995) Direct effects of halothane on coronary blood flow, myocardial oxygen consumption, and myocardial segmental shortening in in situ canine hearts. Anesth Analg. 80, 256–262.

    Article  PubMed  CAS  Google Scholar 

  16. Crystal, G.J. and Salem, M.R. (2003) Isoflurane causes vasodilation in the coronary circulation. Anesthesiology. 98, 1030.

    Article  PubMed  Google Scholar 

  17. Priebe, H. and Foex, P. (1987) Isoflurane causes regional myocardial dysfunction in dogs with critical coronary artery stenoses. Anesthesiology. 66, 293–300.

    PubMed  CAS  Google Scholar 

  18. Cason, B.A., Verrier, E.D., London, M.J., et al. (1987) Effects of isoflurane and halothane on coronary vascular resistance and collateral myocardial blood flow: their capacity to induce coronary steal. Anesthesiology. 67, 665–675.

    Article  PubMed  CAS  Google Scholar 

  19. Kersten, J.R., Brayer, A.P., Pagel, P.S., et al. (1994) Perfusion of ischemic myocardium during anesthesia with sevoflurane. Anesthesiology. 81, 995–1004.

    Article  PubMed  CAS  Google Scholar 

  20. Eger, E. (1994) New inhaled anesthetics. Anesthesiology. 80, 906–922.

    Article  PubMed  CAS  Google Scholar 

  21. Pavlin, E.G. and Su, J.Y. (1994) Cardiopulmonary pharmacology, in Anesthesia (Miller R, ed.), Churchill Livingstone, Philadelphia, PA, p. 148.

    Google Scholar 

  22. Rivenes, S.M., Lewin, M.B., Stayer, S.A., et al. (2001) Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanylmidazolam in children with congenital heart disease. Anesthesiology. 94, 223–229.

    Article  PubMed  CAS  Google Scholar 

  23. Stoelting, R.K. (1999) Pharmacology and Physiology in Anesthetic Practice, 3rd Ed. Lippincott, Williams, and Wilkins, Philadelphia, PA.

    Google Scholar 

  24. Muzi, M., Ebert, T.J., Hope, W.G., et al. (1996) Site(s) mediating sympathetic activation with desflurane. Anesthesiology. 85, 737–747.

    Article  PubMed  CAS  Google Scholar 

  25. Warltier, D.C., Al Wathiqui, M.H., Kampine, J.P., et al. (1988) Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology. 69, 552–565.

    Article  PubMed  CAS  Google Scholar 

  26. Marijic, J., Stowe, D.F., Turner, L.A., et al. (1990) Differential protective effects of halothane and isoflurane against hypoxic and reoxygenation injury in the isolated guinea pig heart. Anesthesiology. 73, 976–983.

    Article  PubMed  CAS  Google Scholar 

  27. Novalija, E., Fujita, S., Kampine, J.P., et al. (1999) Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts. Anesthesiology. 91, 701–712.

    Article  PubMed  CAS  Google Scholar 

  28. Conzen, P.F., Fischer, S., Detter, C., et al. (2003) Sevoflurane provides greater protection of myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology. 99, 826–833.

    Article  PubMed  CAS  Google Scholar 

  29. Murray, C.E., Jennings, R.B., and Reimer, K.A. (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 74, 1124–1136.

    Google Scholar 

  30. Zaugg, M., Lucchinetti, E., Spahn, D.R., et al. (2002) Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathways. Anesthesiology. 97, 4–14.

    Article  PubMed  CAS  Google Scholar 

  31. Cullen, S.C. and Gross, E.G. (1951) The anesthetic properties of xenon in animals and human beings with additional observation on krypton. Science. 1113, 580–582.

    Article  Google Scholar 

  32. Rossaint, R., Reyle-Hahn, R., Schulte, J., et al. (2003) Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology. 98, 6–13.

    Article  PubMed  CAS  Google Scholar 

  33. Lachmann, B., Armbruster, S., Schairer, W., et al. (1990) Safety and efficacy of xenon in routine use as an inhalational anesthetic. Lancet. 335, 1413–1415.

    Article  PubMed  CAS  Google Scholar 

  34. Luttrop, H.H., Romner, B., Perhag, L., et al. (1993) Left ventricular performance and cerebral hemodynamics during xenon anesthesia: a transesophageal echocardiography and transcranial Doppler sonography study. Anesthesia. 48, 1045–1049.

    Article  Google Scholar 

  35. Stowe, D.F., Rehmert, G.C., Wai-Meng, K., et al. (2000) Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts of myocytes. Anesthesiology. 92, 516–522.

    Article  PubMed  CAS  Google Scholar 

  36. Franks, N.P. and Lieb, W.R. (1994) Molecular and cellular mechanisms of general anaesthesia. Nature. 367, 607–614.

    Article  PubMed  CAS  Google Scholar 

  37. Seltzer, J.L., Gerson, J.I., and Allen, F.B. (1980) Comparison of the cardiovascular effects of bolus vs incremental administration of thiopentone. Br J Anaesth. 52, 527–529.

    Article  PubMed  CAS  Google Scholar 

  38. Sunzel, M., Paalzow, L., Berggren, L., et al. (1988) Respiratory and cardiovascular effects in relation to plasma levels of midazolam and diazepam. Br J Clin Pharmacol. 25, 561569.

    Google Scholar 

  39. McCammon, R.L., Hilgenberg, J.C., Stoelting, R.K. (1980) Hemodynamic effects of diazepam-nitrous oxide in patients with coronary artery disease. Anesth Analg. 59, 438–441.

    Article  PubMed  CAS  Google Scholar 

  40. Hanouz, J., Yvon, A., Guesne, G., et al. (2001) The in vitro effects of remifentanil, sufentanil, fentanyl, and alfentanil on isolated human right atria. Anesth Analg. 93, 543–549.

    Article  PubMed  CAS  Google Scholar 

  41. Kanaya, N., Kahary, D.R., Murray, P.A., and Damron, D.S. (1998) Differential effects of fentanyl and morphine on intracellular calcium transients and contraction in rate ventricular myocytes. Anesthesiology. 89, 1532–1542.

    Article  PubMed  CAS  Google Scholar 

  42. Waxman, K., Shoemaker, W.C., and Lippmann, M. (1980) Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg. 58, 355–358.

    Google Scholar 

  43. Robinson, J.F., Ebert, T.J., O’Brien, T.J., et al. (1997) Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology. 86, 64–72.

    Article  PubMed  CAS  Google Scholar 

  44. Bray, R.J. (1995) Fatal myocardial failure associated with a propofol infusion in a child. Anaesthesia. 50, 94.

    Article  PubMed  CAS  Google Scholar 

  45. Tramer, M.R., Moore, R.A., and McQuay, H.J. (1997) Propofol and bradycardia: causation, frequency and severity. Br J Anaesth. 78, 642–651.

    PubMed  CAS  Google Scholar 

  46. James, M.F.M., Reyneke, C.J., and Whiffler, K. (1989) Heart block following propofol: a case report. Br J Anaesth. 62, 213–215.

    Article  PubMed  CAS  Google Scholar 

  47. Sprun, J., Lgletree-Hughes, M.L., McConnell, B.K., et al. (2001) The effects of propofol on the contractility of failing and nonfailing human heart muscles. Anesth Analg. 93, 550–559.

    Article  Google Scholar 

  48. Kissin, I., Motomura, S., Aultman, D.F., et al. (1983) Inotropic and anesthetic potencies of etomidate and thiopental in dogs. Anesth Analg. 62, 961–965.

    Article  PubMed  CAS  Google Scholar 

  49. Fragen, R.J., Shanks, C.A., Molteni, A., et al. (1984) Effects of etomidate on hormonal responses to surgical stress. Anesthesiology. 61, 652–656.

    Article  PubMed  CAS  Google Scholar 

  50. Wagner, R.L., White, P.F., Kan, P.B., et al. (1984) Inhibition of adrenal steroidogensis by anesthetic etomidate. N Engl J Med. 310, 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  51. Ivankovich, A.D., Miletich, D.J., Albrecht, R.F., et al. (1975) The effect of pancuronium on myocardial contraction and catecholamine metabolism. J Pharm Pharmacol. 27, 837–841.

    PubMed  CAS  Google Scholar 

  52. Domenech, J.S., Garcia, R.C., Sastain, J.M.R., et al. (1976) Pancuronium bromide: an indirect sympathomimetic agent. Br J Anaesth. 48, 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  53. Han, J.S. (1986) Physiologic and neurochemical basis of acupuncture analgesia, in The International Textbook of Cardiology (Cheng, T.O., ed.), Pergamon, New York, NY, pp. 1124–1126.

    Google Scholar 

  54. Felhendler, D.P.T. and Lisander, B. (1996) Pressure on acupoints decreases postoperative pain. Clin J Pain. 12, 326–329.

    Article  PubMed  CAS  Google Scholar 

  55. Li, P., Pitsillides, K.F., Rendig, S.V., et al. (1998) Reversal of reflex-induced myocardial ischemia by median nerve stimulation: a feline model of electroacupuncture. Circulation. 97, 1186–1194.

    PubMed  CAS  Google Scholar 

  56. Stein, D.J., Birnbach, D.J., Danzer, B.I., et al. (1997) Acupressure versus intravenous metoclopramide to prevent nausea and vomiting during spinal anesthesia for cesarean section. Anesth Analg. 84, 342–345.

    Article  PubMed  CAS  Google Scholar 

  57. Acupuncture. NIH Consensus Conference. JAMA. (1998) 280, 1518–1524.

    Article  Google Scholar 

  58. Sessler, D.I. (1997) Mild perioperative hypothermia. N Engl J Med. 336, 1630–1637.

    Article  Google Scholar 

  59. Hanouz, J., Yvon, A., Massetti, M., et al. (2002) Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology. 97, 33–41.

    Article  PubMed  CAS  Google Scholar 

  60. Kersten, J.R., Schmeling, T.J., Hettrick, D.A., et al. (1996) Mechanism of myocardial protection by isoflurane: role of adenosine triphosphate-regulated potassium (KATP) channels. Anesthesiology. 85, 794–807.

    Article  PubMed  CAS  Google Scholar 

  61. Belhomme, D., Peynet, J., Louzy, M., et al. (1999) Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation. 100, II340–II344.

    PubMed  CAS  Google Scholar 

  62. De Hert, S., ten Broeck, P., Mertens, E., et al. (2002) Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology. 97, 42–49.

    Article  PubMed  Google Scholar 

  63. Sigg, D.C., Coles, J.A., Jr., Gallagher, W.J., Oeltgen, P.R., and Iaizzo, P.A. (2001) Opioid preconditioning: myocardial function and energy metabolism. Ann Thorac Surg. 72, 1576–1582.

    Article  PubMed  CAS  Google Scholar 

  64. Sigg, D.C., Coles, J.A., Jr., Oeltgen, P.R., and Iaizzo, P.A. (2002) Role of delta-opioid receptors in infarct size reduction in swine. Am J Physiol Heart Circ Physiol. 282, H1953–H1960.

    PubMed  CAS  Google Scholar 

  65. Hong, J.B., Sigg, D.C., Upson, K., Oeltgen, P.R., Harlow, H.H., and Iaizzo, P.A. (2003) Role of delta-opioid receptors in preventing ischemic damage of isolated porcine skeletal muscle. (Currently not published; private manuscript.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Loushin, M.K. (2005). The Effects of Anesthetic Agents on Cardiac Function. In: Iaizzo, P.A. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-59259-835-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-835-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-443-2

  • Online ISBN: 978-1-59259-835-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics