Skip to main content

Cardiac and Vascular Receptors and Signal Transduction

Physiological and Pathophysiological Roles of Important Cardiac and Vascular Receptors

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Cellular physiological functions are regulated via signaling mechanisms in essentially any cell type of any organ. Although myocardial cells are unique in that they are interconnected to each other with gap junctions and act as an electrical syncytium, there are nevertheless an enormous number of important cellular receptors that allow the cells to receive and respond to various signals. Many of these receptors are located on the cellular membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rockman, H.A., Koch, W.J., and Lefkowitz, R.J. (2002) Seven-transmembrane-spanning receptors and heart function. Nature. 415, 206–212.

    Article  PubMed  CAS  Google Scholar 

  2. del Monte, F., Kaufmann, A.J., Poole-Wilson, P.A., et al. (1993) Coexistence of functioning β-1 and β-2 adrenoreceptors in single myocytes from human ventricle. Circulation. 88, 854–863.

    PubMed  Google Scholar 

  3. Bristow, M.R., Hershberger, R.E., Port, J.D., et al. (1990) B-adrenergic pathways in non-failing and failing human ventricular myocardium. Circulation. 82, 112–125.

    Google Scholar 

  4. Opie, L. (1998) Receptors and signal transduction, in The Heart: Physiology, From Cell to Circulation, 3rd Ed. (Opie, L., ed.), Lippincott, Williams, and Wilkins, Philadelphia, PA, pp. 173–207.

    Google Scholar 

  5. Hohl, C.M. and Li, Q. (1991) Compartmentation of camp in adult canine ventricular myocytes. Relation to single cell free calcium transients. Circ Res. 69, 1369–1379.

    PubMed  CAS  Google Scholar 

  6. Lader, A.S., Xiao, Y.F., Ishikawa, Y., et al. (1998) Cardiac Gsα overexpression enhances L-type calcium channels through an adenylyl cyclase independent pathway. Proc Natl Acad Sci USA. 95, 9669–9674.

    Article  PubMed  CAS  Google Scholar 

  7. Port, J.D. and Bristow, M.R. (2001) Altered B-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol. 33, 887–905.

    Article  PubMed  CAS  Google Scholar 

  8. Gauthier, C., Langin, D., and Balligand, J.L. (2000) B3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci. 21, 426–431.

    Article  PubMed  CAS  Google Scholar 

  9. Laporte, S.A., Oakley, R.H., Holt, J.A., Barak, L.S., and Caron, M.G. (2000) The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β-2 adrenergic receptor into clathrin coated pits. J Biol Chem. 275, 23,120–126.

    Article  PubMed  CAS  Google Scholar 

  10. Luttrell, L.M., Ferguson, S.S., Daaka, Y., et al. (1999) B-arrestin-dependent formation of β-2 adrenergic receptor-Src protein kinase complexes. Science. 283, 655–661.

    Article  PubMed  CAS  Google Scholar 

  11. Shenoy, S.K., McDonald, P.H., Kohout, T.A., and Lefkowitz, R.J. (2001) Regulation of receptor fate by ubiquitination of activated β-2 adrenergic receptor and β-arrestin. Science. 294, 1574–1577.

    Article  Google Scholar 

  12. Mann, D., Kent, R., Parsons, B., and Cooper, I.V.G. (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation. 85, 790–804.

    PubMed  CAS  Google Scholar 

  13. Bristow, M.R., Ginsburg, R., Umans, V., et al. (1986) B 1 and b 2-adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective b 1-receptor down-regulation in heart failure. Circ Res. 59, 297–309.

    PubMed  CAS  Google Scholar 

  14. Ungerer, M., Parruti, G., Bohm, M., et al. (1994) Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart. Circ Res. 74, 206–213.

    PubMed  CAS  Google Scholar 

  15. Steinberg, S.F. (1999) The molecular basis for distinct β-AR subtype action in cardiomyocytes. Circ Res. 85, 1101–1111.

    PubMed  CAS  Google Scholar 

  16. Lader, A.S., Xiao, Y.F., Ishikawa, Y., et al. (1998) Cardiac Gsa overexpression enhances L-type calcium channels through an adenylyl cyclase independent pathway. Proc Natl Acad Sci USA. 95, 9669–9674.

    Article  PubMed  CAS  Google Scholar 

  17. Communal, C., Singh, K., Sawyer, D.B., and Colucci, W.S. (1999) Opposing effects of β-1 and β-2 adrenergic receptor on cardiac myocyte apoptosis: role of a pertussis toxin sensitive G protein. Circulation. 100, 2210–2212.

    PubMed  CAS  Google Scholar 

  18. Zaugg, M., Xu, W., Lucchinetti, E., Shafiq, S.A., Jamali, N.Z., and Siddiqui, M.A. (2000) B-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation. 102, 344–350.

    PubMed  CAS  Google Scholar 

  19. Bisognano, J.D., Weinberger, H.D., Bohlmeyer, T.J., et al. (2000) Myocardial-directed overexpression of the human β-1-adrenergic receptor in transgenic mice. J Mol Cell Cardiol. 32, 817–830.

    Article  PubMed  CAS  Google Scholar 

  20. Saito, S., Hiroi, Y., Zou, Y., et al. (2000) B-adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem. 275, 34,528–34,533.

    Article  PubMed  CAS  Google Scholar 

  21. Lowes, B.D., Gill, E.A., Abraham, W.T., et al. (1999) Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol. 83, 1201–1205.

    Article  PubMed  CAS  Google Scholar 

  22. Liggett, S.B., et al. (1998) The Ile164 B-2 AR polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest. 102, 1534–9.

    Article  PubMed  CAS  Google Scholar 

  23. Wagoner, L.E., Craft, L.L., Singh, B., et al. (2000) Polymorphisms of the β-2 AR determine exercise capacity in patients with heart failure. Circ Res. 86, 834–840.

    PubMed  CAS  Google Scholar 

  24. Graham, R.M., Perez, D.M., Hwa, J., and Piascik, M.T. (1996) Alpha-AR subtypes. Molecular structure, function and signaling. Circ Res. 78, 737–749.

    PubMed  CAS  Google Scholar 

  25. Otani, H., Otani, H., and Das, D.K. (1988) Alpha-1 adrenoreceptor mediated phosphoinisotidie breakdown and inotropic response in rate left ventricular papillary muscles. Circ Res. 62, 8–17.

    PubMed  CAS  Google Scholar 

  26. Hwang, K.C., Grady, C.D., Sweet, W.E., and Moravec, C.S. (1996) Alpha-1 adrenergic receptor coupling with Gh in the failing human heart. Circulation. 94, 718–726.

    PubMed  CAS  Google Scholar 

  27. Choi, D.J., Koch, W.J., Hunter, J.J., and Rockman, H.A. (1997) Mechanism of β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-ARK. J Biol Chem. 272, 17,223–17,229.

    Article  PubMed  CAS  Google Scholar 

  28. Knowlton, K.U., Michel, M.C., Itani, M., et al. (1993) The alA-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem. 268, 15,374–15,380.

    PubMed  CAS  Google Scholar 

  29. Sugden, P.H. (1999) Signaling in myocardial hypertrophy: life after calcineurin? Circ Res. 84, 633–646.

    PubMed  CAS  Google Scholar 

  30. Barki-Harrington, L., Luttrell, L.M., and Rockman, H.A. (2003) Dual inhibition of β-adrenergic and angiotensin II receptors by a single antagonist. Circulation. 108, 1611–1618.

    Article  PubMed  CAS  Google Scholar 

  31. Dzimiri, N. (2002) Receptor crosstalk: Implications for cardiovascular function, disease and therapy. Eur J Biochem. 269, 4713–4730.

    Article  PubMed  CAS  Google Scholar 

  32. Münzel, T., Feil, R., Mülsch, A., Lohmann, S.M., Hofmann, F., and Walter, U. (2003) Physiology and pathophysiology of vascular signaling controlled by cyclic guanosine 3′,5′-cyclic monophosphate-dependent protein kinase. Circulation. 108, 2172–2183.

    Article  PubMed  Google Scholar 

  33. von der Leyen, H.E. and Dzau, V.J. (2001) Therapeutic potential of nitric oxide synthase gene manipulation. Circulation. 103, 2760–2765.

    PubMed  Google Scholar 

  34. Loscalzo, J. (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res. 88, 756–7562.

    Article  PubMed  CAS  Google Scholar 

  35. Champion, H.C., Skaf, M.W., and Hare, J.M. (2003) Role of nitric oxide in the pathophysiology of heart failure. Heart Fail Rev. 8, 35–46.

    Article  PubMed  CAS  Google Scholar 

  36. Jugdutt, B.I. (2003) Nitric oxide and cardiovascular protection. Heart Fail Rev. 8, 29–34.

    Article  PubMed  CAS  Google Scholar 

  37. Young-Myeong, K., Bombeck, C.A., and Billiar, T.R. (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 84, 253–256.

    Google Scholar 

  38. Kuhn, M. (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase A. Circ Res. 93, 700–709.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sigg, D.C. (2005). Cardiac and Vascular Receptors and Signal Transduction. In: Iaizzo, P.A. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-59259-835-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-835-9_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-443-2

  • Online ISBN: 978-1-59259-835-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics