Skip to main content

Determination of Cysteinyl-Containing Peptides and Associated Enzyme Activities in Rat Tissues by Reverse Phase HPLC

  • Chapter
Taurine 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 442))

  • 417 Accesses

Abstract

We have developed a sensitive chromatographic method using fluorescence detection for the rapid analysis of monobromobimane-derivatized cysteine and cysteine-containing peptides. The method allows determination of these substances and assay of the enzymes involved in their formation and breakdown: γ-glutamylcysteine synthetase (γ-Glu-Cys synthetase), GSH synthetase, γ-glutamyl transpeptidase (γ-Glu transpeptidase) and dipeptidase. In the assay of GSH synthetase, 90% of the endogenous interfering GSH can be removed by preincubation with thiopropyl Sepharose resin. The distribution of the four enzymes listed above has been measured in liver, heart, lung and kidney of the rat. Some kinetic constants are: hepatic γ-Gly-Cys synthetase: Km (glutamate) 3.36 ± 0.33 mM, Vmax 85.0 ± 2.3 nmol/min/mg protein (Ki for buthionine sulfoximine 1.84 ± 0.11 μM); hepatic GSH synthetase: high affinity Km (glycine) 0.67 ± 0.30 mM, Vmax 7.86 ± 1.17 nmol/min/mg protein; renal γ-Glu transpeptidase: Km (glycylglycine) 8.63 ± 0.07 mM, Vmax 23.6 ± 0.7 μmol/min/mg protein (Ki for AT-125 2.64 ± 0.17 mM); renal dipeptidase: Km (cysteinylglycine) 0.55 ± 0.06 mM, Vmax 100.6 ± 4.5 nmol/min/mg protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler, E. and Gelbart, T., 1986, Improved assay of the enzymes of glutathione synthesis: γ-glutamyl-cysteine synthetase and glutathione synthetase, Clin. Chim. Acta, 158:115–123.

    Article  PubMed  CAS  Google Scholar 

  2. Davis, J.S., Balinsky, J.B., Harington, J.S., and Shepherd, J.B., 1973, Assay, purification, properties and mechanism of action γ-glutamylcysteine synthetase from the liver of the rat and Xenopus laevis, Biochem J., 133:667–678.

    PubMed  CAS  Google Scholar 

  3. Dennda, G. and Kula, M.R., 1986, Assay of the glutathione-synthesizing enzymes by high-performance liquid chromatography, Biotechnology and Applied Biochemistry, 8:459–464.

    PubMed  CAS  Google Scholar 

  4. Elce, J.S. and Broxmeyer, B., 1976, γ-Glutamyltransferase of rat kidney, Biochem J., 153:223–232.

    PubMed  CAS  Google Scholar 

  5. Fahey, R.C. and Newton, G.L., 1987, Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography, Meth. Enzymol., 143:85–96.

    Article  PubMed  CAS  Google Scholar 

  6. Galindo, J.D., Cremades, A., Monserrat, F., and Peñafiel, R., 1992, The effect of glycine administration on taurine concentration in the rat liver, Comp. Biochem. Physiol. [A], 102A:147–149.

    Article  CAS  Google Scholar 

  7. Griffith, O.W., 1981, Depletion of glutathione by inhibition of biosynthesis, Meth. Enzymol., 77:59–63.

    Article  PubMed  CAS  Google Scholar 

  8. Griffith, O.W., 1982, Mechanism of action, metabolism and toxicity of buthionine sulphoximine and its higher homologues, potent inhibitors of glutathione synthesis, J. Biol. Chem., 257:13704–13712.

    PubMed  CAS  Google Scholar 

  9. Hamel, D.M., White, C, and Eaton, D.L., 1992, Determination of γ-glutamylcysteine synthetase and glutathione synthetase activity by HPLC, Toxicology Methods, 1:273–288.

    Google Scholar 

  10. Hoskins, J.A. and Davies, F.F. 1986, The analysis of low levels of γ-glutamyltransferase activity by high-performance liquid chromatography, Anal. Biochem., 152:314–318.

    Article  PubMed  CAS  Google Scholar 

  11. Kiuchi, K., Nagatsu, T., Togari, A., and Kumagai, H., 1986, Highly sensitive assay for γ-glutamyltranspeptidase activity by high-performance liquid chromatography with electrochemical detection, J. Chromatogr., 357:191–198.

    Article  PubMed  CAS  Google Scholar 

  12. Kosower, E.M., Pazhenchevsky, B., and Hershkowitz, E., 1978,1,5-diazabicylo[3.3.0]octadiene-diones (9,10-dioxabimanes). Strongly fluorescent syn isomers, J. Amer. Chem. Soc, 100:6516–6518.

    Article  CAS  Google Scholar 

  13. Kozak, E.M. and Täte, S.S., 1982, Glutathione-degrading enzymes of microvillus membranes, J. Biol. Chem., 257:6322–6327.

    PubMed  CAS  Google Scholar 

  14. Lowry, O.J., Rosebrough, N.J., Farr, A.L., and Randall, R.J., 1951, Protein measurement with folin phenol reagent, J. Biol Chem., 193:265–275.

    PubMed  CAS  Google Scholar 

  15. Matheson, A.T. and Tattrie, B.L., 1964, A modified Yemm and Cocking ninhydrin reagent for peptidase assay, Canadian Journal of Biochemistry, 42:95–103.

    Article  CAS  Google Scholar 

  16. McIntyre, T. and Curthoys, N.P., 1982, Renal catabolism of glutathione: Characterization of a particulate rat renal dipeptidase that catalyzes the hydrolysis of cysteinylglycine, J. Biol. Chem., 257:11915–11921.

    PubMed  CAS  Google Scholar 

  17. Meister, A. and Anderson, M.E., 1983, Glutathione, Ann. Rev. Biochem., 52:711–760.

    Article  PubMed  CAS  Google Scholar 

  18. Meister, A., Tate, S.S., and Griffith, O.W., 1981, γ-Glutamyl transpeptidase, Meth. Enzymol., 77:237–251.

    Article  PubMed  CAS  Google Scholar 

  19. Minnich, V., Smith, M.B., Brauner, M.J., and Majerus, P.W., 1971, Glutathione biosynthesis in human erythrocytes, J. Clin. Invest., 50:507–513.

    Article  PubMed  CAS  Google Scholar 

  20. Nardi, G., Cipollaro, M., and Loguercio, C., 1990, Assay of γ-glutamylcysteine synthetase and glutathione synthetase in erythrocytes by high-performance liquid chromatograhy with fluorimetric detection, J. Chromatog., 530:122–128.

    CAS  Google Scholar 

  21. Oppenheimer, L., Wellner, V.P., Griffith, O.W., and Meister, A., 1979, Glutathione synthetase: Purification from rat kidney and mapping of the substrate binding sites, J. Biol. Chem., 254:5184–5190.

    PubMed  CAS  Google Scholar 

  22. Patterson, E., 1976, A dipeptidase from Escherichia coli B1, Meth. Enzymol., 45:377–386.

    Article  PubMed  CAS  Google Scholar 

  23. Reeve, R., Kuhlenkamp, J., and Kaplowitz, N., 1980, Estimation of glutathione in rat liver by reversed-phase high-performance liquid chromatography: separation from cysteine and γ-glutamylcysteine, J. Chromatogr., 194:424–428.

    Article  PubMed  CAS  Google Scholar 

  24. Seelig, G. and Meister, A., 1985, Glutathione biosynthesis; γ-glutamylcysteine synthetase from rat kidney, Meth. Enzymoi, 113:379–399.

    Article  CAS  Google Scholar 

  25. Sekura, R. and Meister, A., 1977, γ-Glutamylcysteine synthetase: Further purification, “half of the sites” reactivity, subunits and specificity, J. Biol. Chem., 252:2599–2605.

    PubMed  CAS  Google Scholar 

  26. Smith, G.D., Ding, J.L., and Peters, T.J., 1979, A sensitive fluorimetric assay for γ-glutamyl transferase, Anal. Biochem., 100:136–139.

    Article  PubMed  CAS  Google Scholar 

  27. Snoke, J.E. and Bloch, K., 1955, Studies on the mechanism of action of glutathione synthetase, J. Biol. Chem., 213:825–835.

    PubMed  CAS  Google Scholar 

  28. Täte, S.S. and Meister, A., 1974, Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione, J. Biol Chem., 249:7593–7602.

    PubMed  Google Scholar 

  29. Wapnir, R.A., Mancusi, V.J., and Goldstein, L.A., 1982, Comparative ontogenesis of γ-glutamyl transpeptidase in rat tissues, Experientia, 38:647–648.

    Article  PubMed  CAS  Google Scholar 

  30. Yan, C.C. and Huxtable, R.J., 1994, Quantitation of the hepatic release of metabolites of the pyrrolizidine alkaloid, monocrotaline, Toxicol. Appl. Pharmacol., 127:58–63.

    Article  PubMed  CAS  Google Scholar 

  31. Yan, C.C. and Huxtable, R.J., 1995, Fluorometric determination of monobromobimane and orthophthaldehyde adducts of γ-glutamylcysteine and glutathione: Application of assay to γ-glutamylcysteine synthetase activity and glutathione concentration in the liver, Journal of Chromatography, B: Biomédical Applications, 672:217–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yan, C.C., Huxtable, R.J. (1998). Determination of Cysteinyl-Containing Peptides and Associated Enzyme Activities in Rat Tissues by Reverse Phase HPLC. In: Schaffer, S., Lombardini, J.B., Huxtable, R.J. (eds) Taurine 3. Advances in Experimental Medicine and Biology, vol 442. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0117-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0117-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0119-4

  • Online ISBN: 978-1-4899-0117-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics