Skip to main content

A New Approach to Monitor Spinal Cord Vitality in Real Time

  • Conference paper
Oxygen Transport to Tissue XXV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 540))

Abstract

Spinal cord monitoring during various pathophysiological situations such as: spinal cord injury, spinal arterial sclerosis and different surgical procedures is essential to assure spinal cord integrity. Up to now, the most common methods in experimental and clinical practice includes the monitoring of Somatosensory Evoked Potential or Direct Motor Pathway Stimulation techniques.1 In the last decade a few publications described the use of laser Doppler flowmetry (LDF) technique for spinal cord blood flow evaluation in experimental animals and during clinical procedures.2–5 These studies showed that the LDF technique is a sensitive, stable non-invasive tool for on-line evaluation of spinal cord blood flow (SCBF) and is well correlated with other quantitative blood flow approaches such as the microsphere method6 and the hydrogen clearance method.2 Under normal conditions, oxygen metabolism in the spinal cord is of 1–2 ml/100g/min while, the cerebral oxygen metabolism is 3.5m1/100g/min 7. Spinal cord oxygen metabolism decreases at the caudal direction, thus the medulla oblongata and the spinal cord are more resistant to oxygen deficiency than the cortex.8;7 NADH, a major component of the respiratory chain, is one of the most sensitive component to detect oxygen deficiency.9 A decrease in oxygen supply to the spinal cord tissue is followed by a decrease in ATP levels, a decrease in Na+/K+ ATPase activity and an increase in K+ extracellular levels.10 The monitoring of mitochondrial NADH in the spinal cord is rare in experimental animals and probably absent in clinical monitoring or studies. As earlier indicated, monitoring of the hemodynamic and metabolic state of the spinal cord is of a great importance in different pathophysiological situations, such as in the case of spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. R. Nuwer, Spinal cord monitoring, Muscle Nerve 22, 1620–1630 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. K. U. Frerichs and G. Z. Feuerstein, Laser-Doppler flowmetry. A review of its application for measuring cerebral and spinal cord blood flow, Mo1.Chem. Neuropathol. 12, 55–70 (1990).

    Article  CAS  Google Scholar 

  3. W. F. Young, R. Tuma, and T. O’Grady, Intraoperative measurement of spinal cord blood flow in syringomyelia, Clin. Neurol. Neurosurg. 102, 119–123 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. P. J. Lindsberg, T. P. Jacobs, K. U. Frerichs, J. M. Hallenbeck, and G. Z. Feuerstein, Laser-Doppler flowmetry in monitoring regulation of rapid microcirculatory changes in spinal cord, Am.J.Physiol. 263, H285 - H292 (1992).

    PubMed  CAS  Google Scholar 

  5. M. Marsala, L. S. Sorkin, and T. L. Yaksh, Transient spinal ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage, J.Cereb.Blood Flow Metab. 14, 604–614 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. P. J. Lindsberg, J. T. O’Neill, I. A. Paakkari, J. M. Hallenbeck, and G. Feuerstein, Validation of laser-Doppler flowmetry in measurement of spinal cord blood flow, Am.J.Physiol. 257, H674 - H680 (1989).

    PubMed  CAS  Google Scholar 

  7. E. Fidone and C. Eyzaguirre, Physiology of the Nervous System. ( Year Book Medical Publisher Inc., Chicago, 1975 ), pp. 394–396.

    Google Scholar 

  8. M. Rosenthal, J. LaManna, S. Yamada, W. Younts, and G. Somjen, Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ, Brain Res. 162, 113–127 (1979).

    Article  PubMed  CAS  Google Scholar 

  9. A. Mayevsky: Cerebral Revascularization, edited by E. F. Bernstein, A. D. Callow, A. N. Nicolaides and E. G. Shifrin (Med-Orion Pub., 1993 ), pp. 51–69.

    Google Scholar 

  10. M. E. Schwab and D. Bartholdi, Degeneration and regeneration of axons in the lesioned spinal cord, Physiol.Rev. 76, 319–370 (1996).

    PubMed  CAS  Google Scholar 

  11. R. K. Naraya, J. E. Wilberger, and J. T. Polvishock, in: Neurotrauma,edited by R. K. Naraya, J. E. Wilberger and J. T. Polvishock (McGraw-Hill Health Professions Division, New York, 1995), pp. 10411311.

    Google Scholar 

  12. T. Ikata, K. Iwasa, K. Morimoto, T. Tonai, and Y. Taoka, Clinical considerations and biochemical basis of prognosis of cervical spinal cord injury, Spine 14, 1096–1101 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. F. P. Girardi, S. N. Khan, F. P. J. Cammisa, and T. J. Blanck, Advances and strategies for spinal cord regeneration, Orthop.Clin.North Am. 31, 465–472 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. R. L. Waters, I. Sie, R. H. Adkins, and J. S. Yakura, Injury pattern effect on motor recovery after traumatic spinal cord injury, Arch.Phys. Med Rehabi1. 76, 440–443 (1995).

    Article  CAS  Google Scholar 

  15. J. D. Balentine, Pathology of experimental spinal cord trauma. II. Ultrastructure of axons and myelin, Lab. Invest. 39, 254–266 (1978).

    PubMed  CAS  Google Scholar 

  16. A. R. Blight, Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling, Neuroscience 10, 521–543 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. J. C. Bresnahan, An electron-microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta), J. Neurol. Sci. 37, 59–82 (1978).

    Article  PubMed  CAS  Google Scholar 

  18. L J. Noble and J. R. Wrathall, Correlative analyses of lesion development and functional status after graded spinal cord contusive injuries in the rat, Exp. Neurol 103, 34–40 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. H. van de Meent, F. P. Hamers, A. J. Lankhorst, M. P. Buise, E. A. Joosten, and W. H. Gispen, New assessment techniques for evaluation of posttraumatic spinal cord function in the rat, J. Neurotrauma.13, 741–754 (1996).

    Google Scholar 

  20. I. M. Tarlov and H. Klinger, Spinal cord compression studies, Am. Med. Assoc. Arch. Neurol. Psychiatry 71, 271–290 (1954).

    Article  CAS  Google Scholar 

  21. M. C. Wallace and C. H. Tator, Spinal cord blood flow measured with microspheres following spinal cord injury in the rat, Can. J. Neurol. Sci. 13, 91–96 (1986).

    PubMed  CAS  Google Scholar 

  22. A. S. Rivlin and C. H. Tator, Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat, Surg. Neurol. 10, 38–43 (1978).

    PubMed  CAS  Google Scholar 

  23. H. Westergren, A. Holtz, M. Farooque, W. R. Yu, and Y. Olsson, Systemic hypothermia after spinal cord compression injury in the rat: does recorded temperature in accessible organs reflect the intramedullary temperature in the spinal cord?, J. Neurotrauma 15, 943–954 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. B. D. Watson, R. Prado, W. D. Dietrich, M. D. Ginsberg, and B. A. Green, Photochemically induced spinal cord injury in the rat, Brain Res. 367, 296–300 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. A. P. Zou, F. Wu, and A. W. J. Cowley, Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation, Hypertension 31, 271–276 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. A. Mayevsky, Level of ischemia and brain functions in the Mongolian gerbil in vivo, Brain Res. 524, 1–9 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. A. Mayevsky, Brain NADH redox state monitored in vivo by fiber optic surface fluorometry, Brain Res. Rev. 7, 49–68 (1984).

    Article  CAS  Google Scholar 

  28. T. B. Ducker, M. Salcman, P. L. J. Perot, and D. Ballantine, Experimental spinal cord trauma, I: Correlation of blood flow, tissue oxygen and neurologic status in the dog, Surg. Neurol. 10, 60–63 (1978).

    PubMed  CAS  Google Scholar 

  29. N. Hayashi, J. C. Dd La Torre, and B. A. Green, Regional spinal cord blood flow and tissue oxygen content after spinal cord trauma, Surg. Forum 31, 461–463 (1980).

    Google Scholar 

  30. B. T. Stokes, M. Garwood, and P. Walters, Oxygen fields in specific spinal loci of the canine spinal cord, Am. J. Physiol. 240, H761 - H766 (1981).

    PubMed  CAS  Google Scholar 

  31. A. Mayevsky and B. Chance, Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer, Science 217, 537–540 (1982).

    Article  PubMed  CAS  Google Scholar 

  32. W. Halangk and W. S. Kunz, Use of NAD(P)H and flavoprotein fluorescence signals to characterize the redox state of pyridine nucleotides in epididymal bull spermatozoa, Biochim. Biophys. Acta 1056, 273278 (1991).

    Google Scholar 

  33. J. M. Coremans, M. van Aken, H. A. Braining, and G. J. Puppels, NADH fluorimetry to predict ischemic injury in transplant kidneys, Adv. Exp. Med Biol. 471, 335–343 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. M. S. Thomiley, N. Lane, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, and C. J. Green, Monitoring of mitochondria! NADH levels by surface fluorimetry as an indication of ischaemia during hepatic and renal transplantation, Adv. Exp. Med Biol. 388, 431–444 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Mayevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Simonovich, M., Barbiro-Michaely, E., Salame, K., Mayevsky, A. (2003). A New Approach to Monitor Spinal Cord Vitality in Real Time. In: Thorniley, M., Harrison, D.K., James, P.E. (eds) Oxygen Transport to Tissue XXV. Advances in Experimental Medicine and Biology, vol 540. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6125-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6125-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3428-4

  • Online ISBN: 978-1-4757-6125-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics