Skip to main content

The Effect of Ischemia and Hypoxia on Renal Blood Flow, Energy Metabolism and Function in Vivo

  • Conference paper
Oxygen Transport to Tissue XXV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 540))

Abstract

The kidneys play a major role in maintaining body homeostasis by regulating the concentration of many of the plasma constituents, and by eliminating all the metabolic wastes. These functions are mediated via two interdependent regulatory systems that govern the rate of glomerular function and tubular secretion and reabsorption. For these processes the kidneys utilize 10% of the whole body oxygen consumption1. Thus, a decrease in oxygen availability causes many abnormalities in cell physiology such as: increase in mitochondrial NADH2, ATP depletion, cell swelling, an increase in intracellular free calcium, acidosis, phospholipase and protease activation, oxidant injury, inflammatory response, a reduction in glomerular filtration rate (GFR)2, 3, inducing acute renal failure (ARF). Furthermore, reperfusion itself is known to enhance renal cellular damage by formation of reactive oxygen species4. Short periods of ischemia will allow resynthesis of ATP, whereas, prolonged ischemia may cause irreversible loss of mitochondrial function, further impairing regeneration of ATP. Therefore, the rate of cell ATP recovery is dependent on the ability of the cell to survive ischemia and also on the duration of the ischemic period3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. D. Dworkin, A. M. Sun, and B. M. Brenner, The Renal Circulations. In: Brenner, B. M. ed. The Kidney. Philadelphia, USA, W.B. Saunders Company. 2000, 277–318.

    Google Scholar 

  2. M. C. Regan, L. S. Young, J. Geraghty, and J. M. Fitzpatrick, Regional renal blood flow in normal and disease states, Urol. Res. 23, 1–10 (1995)

    Article  PubMed  CAS  Google Scholar 

  3. R. B. Hugh, B. M. Brenner, M. R. Clarkson, and W. Lieberthal, Acute Renal Failure. in: Brenner, B. M. ed. The Kidney. W.B. Saunders. CO. USA. 2000, 1201–1262.

    Google Scholar 

  4. S. C. Weight, P. R. Bell, and M. L. Nicholson, Renal ischaemia-reperfusion injury, Br. J. Surg. 83, 162–170 (1996)

    Article  PubMed  CAS  Google Scholar 

  5. T. Q. Howes, C. R. Deane, G. E. Levin, S. V. Baudouin, and J. Moxham, The effects of oxygen and dopamine on renal and aortic blood flow in chronic obstructive pulmonary disease with hypoxemia and hypercapnia, Am. J. Respir. Crit. Care Med. 151, 378–383 (1995)

    Article  PubMed  CAS  Google Scholar 

  6. J. Hoper, Studies on the Dog Kidney In Situ.lnfluence of Local Oxygen Deficiency. Stuttgart. New York. 1991, 35–46.

    Google Scholar 

  7. B. Zillig, G. Schuler, and B. Truniger, Renal function and intrarenal hemodynamics in acutely hypoxic and hypercapnic rats, Kidney Int. 14, 58–67 (1978)

    Article  PubMed  CAS  Google Scholar 

  8. M. Saito and I. Miyagawa, Real-time monitoring of nitric oxide in ischemia-reperfusion rat kidney, Urol. Res. 28, 141–146 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. S. Bachmann and P. Mundel, Nitric oxide in the kidney: synthesis, localization, and function, Am. J. Kidney Dis. 24, 112–129 (1994)

    PubMed  CAS  Google Scholar 

  10. E. Mashiach, S. Sela, J. Winaver, S. M. Shasha, and B. Kristal, Renal ischemia-reperfusion injury: contribution of nitric oxide and renal blood flow., Nephron 80, 458–467 (1998)

    Article  PubMed  CAS  Google Scholar 

  11. W. Lieberthal, E. F. Wolf, H. G. Rennke, C. R. Valeri, and N. G. Levinsky, Renal ischemia and reperfusion impair endothelium-dependent vascular relaxation, Am. J. Physiol. 256, F894 - F900 (1989)

    PubMed  CAS  Google Scholar 

  12. A. Mayevsky, R. Nakache, M. Luger-Hamer, D. Amran, and J. Sonn, Assessment of transplanted kidney vitality by a multiparametric monitoring system, Transplant. Proc. 33, 2933–2934 (2001)

    Article  PubMed  CAS  Google Scholar 

  13. A. Mayevsky, R. Nakache, H. Merhav, M. Luger-Hamer, and J. Sonn, Real time monitoring of intraoperative allograft vitality, Transplant. Proc. 32, 684–685 (2000)

    Article  PubMed  CAS  Google Scholar 

  14. A. Mayevsky and B. Chance, Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer, Science 217, 537–540 (1982)

    Article  PubMed  CAS  Google Scholar 

  15. J. Sonn, E. Granot, R. Etziony, and A. Mayevsky, Effect of hypothermia on brain multi-parametric activities in normoxic and partially ischemic rats, Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 132, 239–246 (2002)

    Article  PubMed  Google Scholar 

  16. A. Mayevsky, A. Meilin, G. G. Rogatsky, N. Zarchin, and S. R. Thom, Multiparametric monitoring of the awake brain exposed to carbon monoxide, J. Appl. Physiol. 78, 1188–1196 (1995)

    PubMed  CAS  Google Scholar 

  17. A. Mayevsky, Brain NADH redox state monitored in vivo by fiber optic surface fluorometry, Brain Res. 319, 49–68 (1984)

    PubMed  CAS  Google Scholar 

  18. A. Mayevsky, E. S. Flamm, W. Pennie, and B. Chance, A fiber optic based multiprobe system for intraoperative monitoring of brain functions, SPIE Proc. 1431, 303–313 (1991)

    Article  Google Scholar 

  19. E. Barbiro, Y. Zurovsky, and A. Mayevsky, Real time monitoring of rat liver energy state during ischemia, Microvasc. Res. 56, 253–260 (1998)

    Article  PubMed  CAS  Google Scholar 

  20. J. Sonn and A. Mayevsky, Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat, Brain Res. 882, 212–216 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. S. L. Linas, D. Whittenburg, and J. E. Repine, O2 metabolites cause reperfusion injury after short but not prolonged renal ischemia, Am. JPhysiol. 253, F685 - F691 (1987)

    CAS  Google Scholar 

  22. H. R. Brady, B. M. Brenner, M. R. Clarkson, and W. Lieberthal, Acute renal failure. in: Brenner, B. M. ed. The Kidney. Philadelphia, USA, W.B. Saunders Company. 2000, 1201–1262.

    Google Scholar 

  23. M. T. Vogt and E. Farber, On the molecular pathology of ischemic renal cell death. Reversible and irreversible cellular and mitochondrial metabolic alterations, Am. JPathol. 53, 1–26 (1968)

    CAS  Google Scholar 

  24. C. Baylis, P. Harton, and K. Engels, Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney., J Am. Soc. Nephrol 1, 875–881 (1990)

    PubMed  CAS  Google Scholar 

  25. R. A. Sharkey, E. M. Mulloy, and S. J. O’Neill, Acute effects of hypoxaemia, hyperoxaemia and hypercapnia on renal blood flow in normal and renal transplant subjects, Eur. Respir. J. 12, 653–657 (1998)

    Article  PubMed  CAS  Google Scholar 

  26. M. S. Thomiley, N. Lane, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, and C. J. Green, Monitoring of mitochondrial NADH levels by surface fluorimetry as an indication of ischaemia during hepatic and renal transplantation, Adv. Exp. Med Biol. 388, 431–444 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Amran-Cohen, D., Sonn, J., Luger-Hamer, M., Mayevsky, A. (2003). The Effect of Ischemia and Hypoxia on Renal Blood Flow, Energy Metabolism and Function in Vivo . In: Thorniley, M., Harrison, D.K., James, P.E. (eds) Oxygen Transport to Tissue XXV. Advances in Experimental Medicine and Biology, vol 540. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6125-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6125-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3428-4

  • Online ISBN: 978-1-4757-6125-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics