Skip to main content

Autophagy and Longevity: Lessons from C. elegans

  • Chapter
Protein Metabolism and Homeostasis in Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 694))

Abstract

Aging is a process in which individuals undergo an exponential decline in vitality, leading to death. In the last two decades, the study of the molecular regulation of aging in model organisms, particularly in C. elegans, has greatly expanded our knowledge of aging. Multiple longevity pathways, such as insulin-like growth factor signaling, TOR signaling, dietary restriction and mitochondrial activity, control aging in C. elegans. Recent genetic studies indicate that autophagy, an evolutionary conserved lysosomal degradation pathway, interacts with various longevity signals in the regulation of C. elegans life span. Here, we review the current progress in understanding the role of autophagy in the regulation of C. elegans life span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert PS, Riddle DL. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C elegans II. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1997:739–68.

    Google Scholar 

  2. Kenyon C, Chang J, Gensch E et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366:461–4.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988; 118:75–86.

    CAS  PubMed  Google Scholar 

  4. Malone EA, Inoue T, Thomas JH. Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 1996; 143:1193–205.

    CAS  PubMed  Google Scholar 

  5. Kenyon C. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C elegans II. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1997:791–813.

    Google Scholar 

  6. Kimura KD, Tissenbaum HA, Liu Y et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277:942–6.

    Article  CAS  PubMed  Google Scholar 

  7. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996; 382:536–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296:1655–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lin K, Dorman JB, Rodan A et al. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997; 278:1319–22.

    Article  CAS  PubMed  Google Scholar 

  10. Ogg S, Paradis S, Gottlieb S et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997; 389:994–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hertweck M, Göbel C, Baumeister R. C. elegans SGK-1 is the critical compnent in the Akt/PKB kinase complex to control stress respnse and life span. Dev Cell 2004; 6:577–88.

    Article  CAS  PubMed  Google Scholar 

  12. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell 2005; 120:449–60.

    Article  CAS  PubMed  Google Scholar 

  13. Ogg S, Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 1998; 2:887–93.

    Article  CAS  PubMed  Google Scholar 

  14. Mihaylova VT, Borland CZ, Manjarrez L et al. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci USA 1999; 96:7427–32.

    Article  CAS  PubMed  Google Scholar 

  15. Rouault JP, Kuwabara PE, Sinilnikova OM et al. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr Biol 1999; 9:329–32.

    Article  CAS  PubMed  Google Scholar 

  16. Salin DA, Brunet A. Fox O transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 2008; 20:126–36.

    Article  Google Scholar 

  17. Antebi A. Genetics of aging in Caenorhabditis elegans. PLoS Genet 2007; 3:1565–71.

    Article  CAS  PubMed  Google Scholar 

  18. Oh SW, Mukhopadhyay A, Svrzikapa N et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA 2005; 102:4494–9.

    Article  CAS  PubMed  Google Scholar 

  19. Motta MC, Divecha N, Lemieux M et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116:551–63.

    Article  CAS  PubMed  Google Scholar 

  20. Brunet A, Sweeney LB, Sturgill JF et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303:2011–5.

    Article  CAS  PubMed  Google Scholar 

  21. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410:227–30.

    Article  CAS  PubMed  Google Scholar 

  22. Cuervo AM, Bergamini E, Brunk UT et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 2005; 1:131–40.

    Article  PubMed  Google Scholar 

  23. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 2008; 77:727–54.

    Article  CAS  PubMed  Google Scholar 

  24. Roth GS, Ingram DK, Lane MA. Caloric restriction in primates and relevance to humans. Ann N Y Acad Sci 2001; 928:305–15.

    Article  CAS  PubMed  Google Scholar 

  25. Houthoofd K, Vanfleteren JR. The longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol 2006; 41:1026–31.

    Article  CAS  PubMed  Google Scholar 

  26. Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 1977; 6:413–29.

    Article  CAS  PubMed  Google Scholar 

  27. Mair W, Panowski SH, Shaw RJ et al. Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans. PLoS One 2009; 4:e4535.

    Article  PubMed  Google Scholar 

  28. Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 1998; 95:13091–6.

    Article  CAS  PubMed  Google Scholar 

  29. Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 2007; 8:835–44.

    Article  CAS  PubMed  Google Scholar 

  30. Partridge L, Piper MD, Mair W. Dietary restriction in Drosophila. Mech Ageing Dev 2005; 126:938–50.

    Article  CAS  PubMed  Google Scholar 

  31. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408:239–47.

    Article  CAS  PubMed  Google Scholar 

  32. Feng J, Bussiere F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001; 1:633–44.

    Article  CAS  PubMed  Google Scholar 

  33. Ewbank JJ, Barnes TM, Lakowski B et al. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 1997; 275:980–3.

    Article  CAS  PubMed  Google Scholar 

  34. Miyadera H, Amino H, Hiraishi A et al. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 2001; 276:7713–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hekimi S, Guarente L. Genetics and the specificity of the aging process. Science 2003; 299:1351–4.

    Article  CAS  PubMed  Google Scholar 

  36. Ishii N, Fujii M, Hartman PS et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 1998; 394:694–7.

    Article  CAS  PubMed  Google Scholar 

  37. Melov S, Ravenscroft J, Malik S et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000; 289:1567–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dillin A, Hsu AL, Arantes-Oliveira N et al. Rates of behavior and aging specified by mitochondrial function during development. Science 2002; 298:2398–401.

    Article  CAS  PubMed  Google Scholar 

  39. Lee SS, Lee RY, Fraser AG et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003; 33:40–8.

    Article  CAS  PubMed  Google Scholar 

  40. Doonan R, McElwee JJ, Matthijssens F et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 2008; 22:3236–41.

    Article  CAS  PubMed  Google Scholar 

  41. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8:931–7.

    Article  CAS  PubMed  Google Scholar 

  42. Maiuri MC, Zalckvar E, Kimchi A et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8:741–52.

    Article  CAS  PubMed  Google Scholar 

  43. Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 27:19–40.

    Article  CAS  PubMed  Google Scholar 

  44. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6:463–77.

    Article  CAS  PubMed  Google Scholar 

  45. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990; 15:305–9.

    Article  CAS  PubMed  Google Scholar 

  46. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501–3.

    Article  CAS  PubMed  Google Scholar 

  47. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132:27–42.

    Article  CAS  PubMed  Google Scholar 

  48. Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 2005; 12(Suppl 2):1535–41.

    Article  CAS  PubMed  Google Scholar 

  49. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell 2000; 103:253–62.

    Article  CAS  PubMed  Google Scholar 

  50. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9:1102–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kramer JM, Moerman DC. Autophagy in C. elegans. Wormbook 2009.

    Google Scholar 

  52. Melendez A, Talloczy Z, Seaman M et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003; 301:1387–91.

    Article  CAS  PubMed  Google Scholar 

  53. Hars ES, Qi H, Ryazanov AG et al. Autophagy regulates ageing in C. elegans. Autophagy 2007; 3:93–5.

    CAS  PubMed  Google Scholar 

  54. Hansen M, Chandra A, Mitic LL et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4:e24.

    Article  PubMed  Google Scholar 

  55. Toth ML, Sigmond T, Borsos E et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 2008; 4:330–8.

    CAS  PubMed  Google Scholar 

  56. Jia K, Thoma C, Akbar M et al. Autophagy genes protect against Salmonella typhimuruim infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci USA 2009; 106; 145:64–9.

    Google Scholar 

  57. Juhasz G, Puskas LG, Komonyi O et al. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 2007; 14:1181–90.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao J, Brault JJ, Schild A et al. FoxO3 coordinately activates protein degradation by the autophagic/ lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007; 6:472–83.

    Article  CAS  PubMed  Google Scholar 

  59. Mammucari C, Milan G, Romanello V et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6:458–71.

    Article  CAS  PubMed  Google Scholar 

  60. Vellai T, Takacs-Vellai K, Zhang Y et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003; 426:620.

    Article  CAS  PubMed  Google Scholar 

  61. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004; 131:3897–906.

    Article  CAS  PubMed  Google Scholar 

  62. Hansen M, Taubert S, Crawford D et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007; 6:95–110.

    Article  CAS  PubMed  Google Scholar 

  63. Morck C, Pilon M. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol 2006; 6:39.

    Article  PubMed  Google Scholar 

  64. Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 2007; 3:597–9.

    PubMed  Google Scholar 

  65. Panowski SH, Wolff S, Aguilaniu H et al. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007; 447:550–5.

    Article  CAS  PubMed  Google Scholar 

  66. Berdichevsky A, Viswanathan M, Horvitz HR et al. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006; 125:1165–77.

    Article  CAS  PubMed  Google Scholar 

  67. Lee IH, Cao L, Mostoslavsky R et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105:3374–9.

    Article  CAS  PubMed  Google Scholar 

  68. Dong MQ, Venable JD, Au N et al. Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 2007; 317:660–3.

    Article  CAS  PubMed  Google Scholar 

  69. Dwivedi M, Song HO, Ahnn J. Autophagy genes mediate the effect of calcineurin on life span in C. elegans. Autophagy 2009; 5:604–7.

    Article  CAS  PubMed  Google Scholar 

  70. Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 2001; 23:1112–9.

    Article  CAS  PubMed  Google Scholar 

  71. Apfeld J, O’Connor G, McDonagh T et al. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 2004; 18:3004–9.

    Article  CAS  PubMed  Google Scholar 

  72. Greer EL, Dowlatshahi D, Banko MR et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 2007; 17:1646–56.

    Article  CAS  PubMed  Google Scholar 

  73. Knowler WC, Barrett-Connor E, Fowler SE et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346:393–403.

    Article  CAS  PubMed  Google Scholar 

  74. Musi N, Hirshman MF, Nygren J et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002; 51:2074–81.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou G, Myers R, Li Y et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167–74.

    CAS  PubMed  Google Scholar 

  76. Anisimov VN, Berstein LM, Egormin PA et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008; 7:2769–73.

    CAS  PubMed  Google Scholar 

  77. Papandreou I, Lim AL, Laderoute K et al. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3 and BNIP3L. Cell Death Differ 2008; 15:1572–81.

    Article  CAS  PubMed  Google Scholar 

  78. Takagi H, Matsui Y, Hirotani S et al. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 2007; 3:405–7.

    CAS  PubMed  Google Scholar 

  79. Lippai M, Csikos G, Maroy P et al. SNF4Aγ, the Drosophila AMPK γ subunit is required for regulation of developmental and stress-induced autophagy. Autophagy 2008; 4:476–86.

    CAS  PubMed  Google Scholar 

  80. Wang Z, Wilson WA, Fujino MA et al. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase and the cyclin-dependent kinase Pho85p. Mol Cell Biol 2001; 21:5742–52.

    Article  CAS  PubMed  Google Scholar 

  81. Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 2003; 5:811–6.

    Article  CAS  PubMed  Google Scholar 

  82. Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121:115–25.

    Article  CAS  PubMed  Google Scholar 

  83. Wu H, Wang MC, Bohmann D. JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev 2009.

    Google Scholar 

  84. Wei Y, Pattingre S, Sinha S et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30:678–88.

    Article  CAS  PubMed  Google Scholar 

  85. Hashimoto Y OS, Nishida E. Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans. Genes Cells 2009; 14:717–720.

    Article  CAS  PubMed  Google Scholar 

  86. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39:359–407.

    Article  CAS  PubMed  Google Scholar 

  87. Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16:1040–52.

    Article  CAS  PubMed  Google Scholar 

  88. Elmore SP, Qian T, Grissom SF et al. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001; 15:2286–7.

    CAS  PubMed  Google Scholar 

  89. Lam M, Oleinick NL, Nieminen AL. Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem 2001; 276:47379–86.

    Article  CAS  PubMed  Google Scholar 

  90. Rodriguez-Enriquez S, He L, Lemasters JJ. Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 2004; 36:2463–72.

    Article  CAS  PubMed  Google Scholar 

  91. Gu Y, Wang C, Cohen A. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett 2004; 577:357–60.

    Article  CAS  PubMed  Google Scholar 

  92. Donati A, Taddei M, Cavallini G et al. Stimulation of macroautophagy can rescue older cells from 8-OHdG mtDNA accumulation: a safe and easy way to meet goals in the SENS agenda. Rejuvenation Res 2006; 9:408–12.

    Article  CAS  PubMed  Google Scholar 

  93. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462:245–53.

    Article  CAS  PubMed  Google Scholar 

  94. Nowikovsky K, Reipert S, Devenish RJ et al. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 2007; 14:1647–56.

    Article  CAS  PubMed  Google Scholar 

  95. Cavallini G, Donati A, Taddei M et al. Evidence for selective mitochondrial autophagy and failure in aging. Autophagy 2007; 3:26–7.

    CAS  PubMed  Google Scholar 

  96. Twig G, Elorza A, Molina AJ et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008; 27:433–46.

    Article  CAS  PubMed  Google Scholar 

  97. Donati A, Ventruti A, Cavallini G et al. In vivo effect of an antilipolytic drug (3,5′-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver. Biochem Biophys Res Commun 2008; 366:786–92.

    Article  CAS  PubMed  Google Scholar 

  98. Chen YF, Kao CH, Chen YT et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev 2009; 23:1183–94.

    Article  CAS  PubMed  Google Scholar 

  99. Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 2009; 17:87–97.

    Article  CAS  PubMed  Google Scholar 

  100. Mathew R, Karp CM, Beaudoin B et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137:1062–75.

    Article  CAS  PubMed  Google Scholar 

  101. Singh R, Kaushik S, Wang Y et al. Autophagy regulates lipid metabolism. Nature 2009; 458:1131–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kailiang Jia or Beth Levine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Jia, K., Levine, B. (2010). Autophagy and Longevity: Lessons from C. elegans . In: Tavernarakis, N. (eds) Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, vol 694. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7002-2_5

Download citation

Publish with us

Policies and ethics