Skip to main content

(Q)SAR Models for Genotoxicity Assessment

  • Chapter
  • First Online:
Ecotoxicology Modeling

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

Assessment of genotoxicity of chemicals is one of the utmost priorities of a regulatory agency since it is indicative of its potential carcinogenic properties. A major challenge to the regulatory agencies today is how to assess the genotoxicity of the large proportion of existing and new substances that have otherwise very little or no information on their genotoxicity potential given the high costs and large time-scales associated with experimental testing. (Quantitative) structure–activity relationships ((Q)SAR)-based methodologies have the potential to serve as rapid and reliable genotoxicity screening tools. Such tools are very useful for regulatory agencies to assess the safety of chemicals, whereas for drug or new chemical manufacturers these aid in providing an insight into the potential genotoxic/mutagenic properties of their novel molecules. To assess genotoxicity of diverse groups of chemicals, various methods ranging from traditional linear modeling techniques to modern machine learning algorithms have been applied by researchers to develop a large variety of (Q)SAR models. This chapter provides an overview of some of the existing (Q)SAR models that have the potential to be integrated in a regulatory framework for nonempirical genotoxicity assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayashi M, Kamata E, Hirose A, Takahashi M, Morita T, Ema M (2005) In silico assessment of chemical mutagenesis in comparison with results of Salmonella microsome assay on 909 chemicals. Mutat Res 588:129–135

    CAS  Google Scholar 

  2. Zhang Q-Y, Aires-de-Sousa J (2007) Random forest prediction of mutagenicity from empirical physicochemical descriptors. J Chem Inf Model 47:1–8

    Google Scholar 

  3. Todeschini R, Consonni V (2002) Handbook of molecular descriptors. Wiley-VCH, Germany

    Google Scholar 

  4. Todeschini R, Consonni V, Mauri A, Pavan (2005) M DRAGON Version 5.3, Telete srl, Milan, Italy

    Google Scholar 

  5. ADRIANA.Code. http://www.molecular-networks.com/software/adrianacode/index.html (accessed March 2008)

  6. Liu K, Feng J, Young SS (2005) PowerMV: A software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. J Chem Inf Model 45:515–522

    CAS  Google Scholar 

  7. Cash GG (2001) Prediction of the genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices. Mutat Res 491:31–37

    CAS  Google Scholar 

  8. Bolzan AD, Bianchi MS (2002) Genotoxicity of streptozotocin. Mutat Res 512:121–134

    CAS  Google Scholar 

  9. Snyder RD, Pearl GS, Mandakas G, Choy WN, Goodsaid F, Rosenblum IY (2004) Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Environ Mol Mutagen 43: 143–158

    CAS  Google Scholar 

  10. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    CAS  Google Scholar 

  11. Ames BN, McCann J, Yamasaki E (1975) Method for detecting carcinogens and mutagens with the Salmonella/mammalian microsome test. Mutat Res 31:347–364

    CAS  Google Scholar 

  12. Williams GM, Kroes R, Waaijers HW, van de Poll KW (1980) The predictive value of short-term screening tests in carcinogenicity evaluation. Elsevier, Amsterdam

    Google Scholar 

  13. Mohn GR, Ellenberger J, van Bladeren PJ (1980) Evaluation and relevance of Escherichia coli test systems for detecting and for characterizing chemical carcinogens and mutagens. In: Williams GM, Kroes R, Waaijers HW, van de Poll KW (eds) Applied methods in oncology, Vol 3. Elsevier, Amsterdam

    Google Scholar 

  14. Rontó G, Tarján I, Gáspár S (1986) Phage T7-inactivation test. A possibility of quantitative mutagenicity screening. Physiol Chem Phys Med NMR 18:275–285

    Google Scholar 

  15. Bradley MO, Bhuyan B, Francis MC, Langenbach R, Peterson A, Huberman E (1981) Mutagenesis by chemical agents in V79 Chinese hamster cells: a review and analysis of the literature. Mutat Res 87:81–142

    CAS  Google Scholar 

  16. Clive D, Spector JFS (1975) Laboratory procedure for assessing specific locus mutations at the Tk locus in cultured L5178Y mouse lymphoma cells. Mutat Res 31:17–29

    CAS  Google Scholar 

  17. Clive D, Johnson KO, Spector JF, Batson AG, Brown MM (1979) Validation and characterization of the L5178Y/TK + ∕ − mouse lymphoma mutagen assay system. Mutat Res 59:61–108

    CAS  Google Scholar 

  18. Clive D, McCuen R, Spector JFS, Piper C, Mavourkin KH (1983) Specific gene mutations in L5178Y cells in culture. Mutat Res 115:225–251

    CAS  Google Scholar 

  19. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147: 29–36

    CAS  Google Scholar 

  20. Latt SA, Allen J, Bloom SE, Carrano A, Falke E, Kram D, Schneider E, Schreck R, Tice R, Whitfield B, Wolff S (1981) Sister chromatid exchanges: A report of the Gene-Tox Program. Mutat Res 87:17–62

    CAS  Google Scholar 

  21. Schmid W (1975) The Micronucleus test. Mutat Res 31:9–15

    CAS  Google Scholar 

  22. Heddle JA, Hite M, Kirkhart B, Mavournin K, MacGregor JT, Newell GW, Salamone MF (1983) The induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 123:61–118

    CAS  Google Scholar 

  23. Graf U, Juon H, Katz AJ, Frei HI, Wuergler FW (1983) A pilot study on a new Drosophila spot test. Mutat Res 120:233–239

    CAS  Google Scholar 

  24. Rodriguez-Arnaiz R, Tellez GO (2002) Structure–activity relationships of several anisidine and dibenzanthracene isomers in the w​∕​ w + somatic assay of Drosophila melanogaster. Mutat Res 514:193–200

    CAS  Google Scholar 

  25. Morpurgo GD, Bellincampi G, Gualandi L, Baldineili, Crescenzi OS (1979) Analysis of mitotic non-disjunction with Aspergillus nidulans. Environ Health Perspect 31:81–95

    CAS  Google Scholar 

  26. Hofnung M, Quillardet P (1988) The SOS Chromotest, a colorimetric assay based on the primary cellular responses to genotoxic agents. Ann NY Acad Sci 534:817–825.

    CAS  Google Scholar 

  27. Quillardet P, Hofnung M (1993) The SOS Chromotest: A review. Mutat Res 297:235–279

    CAS  Google Scholar 

  28. Speit G, Hartmann A (1999) The comet assay (single-cell gel test): a sensitive genotoxicity test for the detection of DNA damage and repair. DNA Repair Protocols 113:203–212

    CAS  Google Scholar 

  29. Oda Y, Nakamuro S, Oki T, Kato T, Shinagawa H. (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229

    CAS  Google Scholar 

  30. Williams GM (1977) Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res 37:1845–1851

    CAS  Google Scholar 

  31. Venger BH, Hansch C, Hatheway GJ, Amrein YU (1979) Ames test of 1-(X-phenyl)-3,3-dialkyltriazenes. A quantitative structure-activity study. J Med Chem 22:473–476

    CAS  Google Scholar 

  32. Hansch C, Venger BH, Panthananickal A (1980) Mutagenicity of substituted (o-phenylenediamine) platinum dichloride in the Ames test. A quantitative structure-activity analysis. J Med Chem 23:459–461

    CAS  Google Scholar 

  33. Debnath AK, de Compadre RLL, Shusterman AJ, Hansch C (1992) Quantitative structure-activity relationship investigation of the role of hydrophobicity in regulating mutagenicity in the Ames test, 2. Mutagenicity of aromatic and heteroaromatic nitro compounds in Salmonella typhimurium TAI00. Environ Mol Mutagen 19:53–70

    CAS  Google Scholar 

  34. King RD, Muggleton SH, Srinivasan A, Sternberg MJE (1996) Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc Natl Acad Sci USA 93:438–442

    CAS  Google Scholar 

  35. Serra JR, Thompson ED, Jurs PC (2003) Development of binary classification of structural chromosome aberrations for a diverse set of organic compounds from molecular structure. Chem Res Toxicol 16:153–163

    CAS  Google Scholar 

  36. Li H, Ung CY, Yap CW, Xue Y, Li ZR, Cao ZW, Chen YZ (2005) Prediction of genotoxicity of chemical compounds by statistical learning methods. Chem Res Toxicol 18:1071–1080

    CAS  Google Scholar 

  37. Mosier PD, Jurs PC, Custer LL, Durham SK, Pearl GM (2003) Predicting the genotoxicity of thiophene derivatives from molecular structure. Chem Res Toxicol 16:721–732

    CAS  Google Scholar 

  38. Nesnow S, Langenbach R, Mass MJ (1985) Pattern recognition analysis of a set of mutagenic aliphatic N-nitrosamines. Environ Health Perspect 61:345–349

    CAS  Google Scholar 

  39. Votano JR, Parham M, Hall LH, Kier LB, Oloff S, Tropsha A, Xie Q, Tong W (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity, Mutagenesis 19: 365–377

    CAS  Google Scholar 

  40. Zheng M, Liu Z, Xue C, Zhu W, Chen K, Luo Z, Jiang H (2006) Mutagenic probability estimation of chemical compounds by a novel molecular electrophilicity vector and support vector machine. Bioinformatics 22:2099–2106

    CAS  Google Scholar 

  41. He L, Jurs PC, Custer LL, Durham SK, Pearl GM (2003) Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers. Chem Res Toxicol 16:1567–1580

    CAS  Google Scholar 

  42. Nair PC, Sobhia ME (2008) Comparative QSTR studies for predicting mutagenicity of nitro compounds. J Mol Graph Model 26:916–934

    CAS  Google Scholar 

  43. Greene N, Judson PN, Langowski JJ, Marchant CA (1999) Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 10:299–314

    CAS  Google Scholar 

  44. CompuDrug Inc., HazardExpert. http://www.compudrug.com/(accessed March 2008).

  45. Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2003). PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 43:228–236

    CAS  Google Scholar 

  46. Rosenkranz HS, Cunningham AR, Zhang YP, Claycamp HG, Macina OT, Sussman NB, Grant SG, Klopman G (1999) Development, characterization and application of predictive-toxicology models. SAR QSAR Environ Res 10:277–298

    CAS  Google Scholar 

  47. Enslein K, Gombar VK, Blake BW (1994). Use of SAR computer-assisted prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program. Mutat Res 305:47–61

    CAS  Google Scholar 

  48. Mekenyan O, Dimitrov S, Serafimova R, Thompson E, Kotov S, Dimitrova N, Walker JD (2004) Identification of the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic activation of chemicals I: TA100 model. Chem Res Toxicol 17:753–766

    CAS  Google Scholar 

  49. Mekenyan O, Todorov M, Serafimova R, Stoeva S, Aptula A, Finking R, Jacob E (2007) Identifying the structural requirements for chromosomal aberration by incorporating molecular flexibility and metabolic activation of chemicals. Chem Res Toxicol 20:1927–1941

    CAS  Google Scholar 

  50. Rothfuss A, Steger-Hartmann T, Heinrich N, Wichard J (2006) Computational Prediction of the chromosome-damaging potential of chemicals. Chem Res Toxicol 19:1313–1319

    CAS  Google Scholar 

  51. Biagi GL, Barbaro AM, Guerra MC, Cantelli Forti G, Aicardi G, Borea PA. (1983) Quantitative relationship between structure and mutagenic activity in a series of 5-nitroimidazoles. Teratog Carcinog Mutagen 3:429–438

    CAS  Google Scholar 

  52. Jinno K (1984) The quantitative structure-activity relationship approach to the mutagenicity of N-nitrosomethylaniline compounds. Mutat Res 141:141–143

    CAS  Google Scholar 

  53. Hakura A, Ninomiya S, Kohda K, Kawazoe Y (1984) Studies on chemical carcinogens and mutagens. XXVI. Chemical properties and mutagenicity of alkyl alkanesulfonates on Salmonella typhimurium TA100. Chem Pharm Bull (Tokyo) 32:3626–3635

    Google Scholar 

  54. Rashid KA, Mullin CA, Mumma RO (1986) Structure-mutagenicity relationships of chalcones and their oxides in the Salmonella assay. Mutat Res 169:71–79

    CAS  Google Scholar 

  55. Trieff NM, Biagi GL, Ramanujam VMS, Connor TH, Cantelli-Forti G, Guerra MC, Bunce HB III, Legator MS (1989) Aromatic amines and acetamides in Salmonella typhimurium TA98 and TA100: A QSAR relation study. J Mol Toxicol 2:53–65

    CAS  Google Scholar 

  56. Debnath AK, de Compadre RLL, Debnath G, Shusterman AJ, Hansch C (1991) Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J Med Chem 34:786–797

    CAS  Google Scholar 

  57. Eriksson L, Jonsson J, Hellberg S, Lindgren F, Sjostrom M, Wold S (1991) A strategy for ranking environmentally occurring chemicals. Part V: The development of two genotoxicity QSARs for halogenated aliphatics. Environ Tox Chem 10:585–596

    CAS  Google Scholar 

  58. Debnath AK, Hansch C (1992) Structure-activity relationship of genotoxic nitropolycyclic aromatic compounds: Further evidence for the importance of hydrophobicity and molecular orbital energies in genetic toxicity. Environ Mol Mutagen 20:140–144

    CAS  Google Scholar 

  59. Debnath AK, Debnath G, Shusterman AJ, Hansch C (1992) A QSAR investigation of the role of hydrophobicity in regulating mutagenicity in the Ames test, 1. Mutagenicity of aromatic and heteroaromatic amines in Salmonella typhimurium TA98 and TA100. Environ Mol Mutagen 19:37–52

    CAS  Google Scholar 

  60. Debnath AK, de Compadre RLL, Hansch C (1992) Mutagenicity of quinolines in Salmonella typhimurium TA100, A QSAR study based on hydrophobicity and molecular orbital determinants. Mutat Res 280:55–65

    CAS  Google Scholar 

  61. Ford GP, Hermans PS (1992) Relative stabilities of nitrenium ions derived from polycyclic aromatic amines – Relationship to mutagenicity. Chem Biol Interact 81:1–18

    CAS  Google Scholar 

  62. Ford GP, Griffin GR (1992) Relative stabilities of nitrenium ions derived from heterocyclic amine food carcinogens: Relationship to mutagenicity. Chem Biol Interact 81:19–33

    CAS  Google Scholar 

  63. Tuppurainen K, Lötjönen S, Laatikainen R, Vartiainen T (1992) Structural and electronic properties of MX compounds related to TA100 mutagenicity. A semi-empirical molecular orbital QSAR study. Mutat Res 266:181–188

    CAS  Google Scholar 

  64. Debnath AK, Hansch C, Kim KH, Martin YC (1993) Mechanistic interpretation of the genotoxicity of nitrofurans (antibacterial agents) using quantitative structure-activity relationships and comparative molecular field analysis. J Med Chem 36:1007–1016

    CAS  Google Scholar 

  65. Debnath AK, Hansch C (1993) The importance of hydrophobicity in the mutagenicity of methanesulfonic acid esters with S. typhimurium. Chem Res Toxicol 6:310–312

    CAS  Google Scholar 

  66. Hooberman BH, Chakraborty PK, Sinsheimer JE (1993) Quantitative structure–activity relationships for the mutagenicity of propylene oxides with Salmonella. Mutat Res 299:85–93

    CAS  Google Scholar 

  67. Debnath AK, Shusterman AJ, Lopez de Compadre RL, Hansch C (1994) The importance of the hydrophobic interaction in the mutagenicity of organic compounds. Mutat Res 305:63–72

    CAS  Google Scholar 

  68. Andre V, Boissart C, Sichel F, Gauduchon P, Le Talaer JY, Lancelot JC, Robba M, Mercier C, Chemtob S, Raoult E, Tallec A (1995) Mutagenicity of nitro- and amino-substituted carbazoles in Salmonella typhimurium. II. Ortho-aminonitro derivatives of 9H-carbazole. Mutat Res 345:11–25

    CAS  Google Scholar 

  69. Hatch FT, Colvin ME (1997) Quantitative structure-activity (QSAR) relationships of mutagenic aromatic and heterocyclic amines. Mutat Res 376:87–96

    CAS  Google Scholar 

  70. Smith CJ, Hansch C, Morton MJ (1997) QSAR treatment of multiple toxicities: the mutagenicity and cytotoxicity of quinolines. Mutat Res 379:167–175

    CAS  Google Scholar 

  71. Tafazoli M, Baeten A, Geerlings P, Kirsch-Volders M (1998) In vitro mutagenicity and genotoxicity study of a number of short-chain chlorinated hydrocarbons using the micronucleus test and the alkaline single cell gel electrophoresis technique (Comet assay) in human lymphocytes: a structure-activity relationship (QSAR) analysis of the genotoxic and cytotoxic potential, Mutagenesis 13:115–126

    CAS  Google Scholar 

  72. Hatch FT, Knize MG, Colvin ME (2001) Extended quantitative structure-activity relationships for 80 aromatic and heterocyclic amines: structural, electronic, and hydropathic factors affecting mutagenic potency. Environ Mol Mutagen 38:268–291

    CAS  Google Scholar 

  73. Andrews LE, Bonin AM, Fransson LE, Gillson AM, Glover SA (2006) The role of steric effects in the direct mutagenicity of N-acyloxy-N-alkoxyamides. Mutat Res 605:51–62

    CAS  Google Scholar 

  74. Chung KT, Chen SC, Wong TY, Li YS, Wei CI, Chou MW (2000) Mutagenicity studies of benzidine and its analogs: Structure–activity relationships. Toxicol Sci 56:351–356

    CAS  Google Scholar 

  75. Benigni R, Bossa C, Netzeva T, Rodomonte A, Tsakovska I (2007) Mechanistic QSAR of aromatic amines: New models for discriminating between homocyclic mutagens and nonmutagens, and validation of models for carcinogens. Environ Mol Mutagen 48:754–771

    CAS  Google Scholar 

  76. Gramatica P, Pilutti P, Papa E (2007) Approaches for externally validated QSAR modeling of nitrated polycyclic aromatic hydrocarbon mutagenicity. SAR QSAR Environ Res 18:169–178

    CAS  Google Scholar 

  77. Chroust K, Pavlova M, Prokop Z, Mendel J, Bozkova K, Kubat Z, Zajickova V, Damborsky J (2007) Quantitative structure–activity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: Wing spot test of Drosophila melanogaster. Chemosphere 67:152–159

    CAS  Google Scholar 

  78. Hu J, Wang W, Zhu Z, Chang H, Pan F, Lin B (2007) Quantitative structure–activity relationship model for prediction of genotoxic potential for quinolone antibacterials. Environ Sci Technol 41:4806–4812

    CAS  Google Scholar 

  79. Knize MG, Hatch FT, Tanga MJ, Lau EY, Colvin ME (2006) A QSAR for the mutagenic potencies of twelve 2-amino-trimethylimidazopyridine isomers: structural, quantum chemical, and hydropathic factors. Environ Mol Mutagen 47:132–146

    CAS  Google Scholar 

  80. Tekiner-Gulbas B, Temiz-Arpaci O, Oksuzoglu E, Eroglu H, Yildiz I, Diril N, Aki-Sener E, Yalcin I (2007) QSAR of genotoxic active benzazoles. SAR QSAR Environ Res 18:251–263

    CAS  Google Scholar 

  81. Garg A, Bhat KL, Bock CW (2002) Mutagenicity of aminoazobenzene dyes and related structures: A QSAR/QPAR investigation. Dyes Pigments 55:35–52

    CAS  Google Scholar 

  82. Bonin AM, Banks TM, Campbell JJ, Glover SA, Hammond GP, Prakash AS, Rowbottom CA (2001) Mutagenicity of electrophilic N-acyloxy-N-alkoxyamides. Mutat Res 494:115–134

    CAS  Google Scholar 

  83. Gupta RL, Dey DK, Juneja TR (1985) Structure-mutagenicity relationships within a series of para-alkoxynitrosobenzenes. Toxicol Lett 28:125–132

    Google Scholar 

  84. Tsai RS, Carrupt PA, Testa B, Caldwell J (1994) Structure-genotoxicity relationships of allylbenzenes and propenylbenzenes: A quantum chemical study. Chem Res Toxicol 7:73–76

    CAS  Google Scholar 

  85. Sugiura K, Goto M (1981) Mutagenicities of styrene oxide derivatives on bacterial test systems: Relationship between mutagenic potencies and chemical reactivity. Chem-Biol Interac 35:71–91

    CAS  Google Scholar 

  86. Sugiura K, Goto M (1983) Mutagenicities of glycidyl ethers for Salmonella typhimurium: Relationship between mutagenic potencies and chemical reactivity. Chem-Biol Interac, 45:153–169

    CAS  Google Scholar 

  87. Hrelia P, Fimognari C, Maffei F, Brighenti B, Garuti L, Burnelli S, Cantelli-Forti G (1998) Synthesis, metabolism and structure–mutagenicity relationships of novel 4-nitro-imidazoles and pyrazoles/in Salmonella typhimurium. Mutat Res 397:293–301

    CAS  Google Scholar 

  88. Poso A, Wright A, Gynther J (1995) An empirical and theoretical study on mechanisms of mutagenic activity of hydrazine compounds. Mutat Res 332:63–71

    CAS  Google Scholar 

  89. Popelier PL, Smith PJ, Chaudry UA (2004) Quantitative structure-activity relationships of mutagenic activity from quantum topological descriptors: Triazenes and halogenated hydroxyfuranones (mutagen-X) derivatives. J Comput Aided Mol Des 18:709–718

    CAS  Google Scholar 

  90. Henry DR, Lavine BK, Jurs PC (1987) Electronic factors and acridine frameshift mutagenicity – A pattern recognition study. Mutat Res 179:115–121

    CAS  Google Scholar 

  91. Sztandera L, Garg A, Hayik S, Bhat KL, Bock CW (2003) Mutagenicity of aminoazo dyes and their reductive-cleavage metabolites: a QSAR/QPAR investigation. Dyes Pigments 59:117–133

    CAS  Google Scholar 

  92. Benigni R, Conti L, Crebelli R, Rodomonte A, Vari MR (2005) Simple and alpha, beta-unsaturated aldehydes: Correct prediction of genotoxic activity through structure-activity relationship models. Environ Mol Mutagen 46:268–280

    CAS  Google Scholar 

  93. Shoji R, Kawakami M (2006) Prediction of genotoxicity of various environmental pollutants by artificial neural network simulation. Mol Divers 10:101–108

    CAS  Google Scholar 

  94. Gramatica P, Papa E, Marrocchi A, Minuti L, Taticchi A (2007) Quantitative structure–activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors. Ecotoxicol Environ Safety 66:353–361

    CAS  Google Scholar 

  95. Serafimova R, Todorov M, Pavlov T, Kotov S, Jacob E, Aptula A, Mekenyan O (2007) Identification of the structural requirements for mutagenicity, by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model. Chem Res Toxicol 20:662–676

    CAS  Google Scholar 

  96. Papa E, Pilutti P, Gramatica P (2008) Prediction of PAH mutagenicity in human cells by QSAR classification. SAR QSAR Environ Res 19:115–127

    CAS  Google Scholar 

  97. Basak SC, Grunwald GD (1995) Predicting mutagenicity of chemicals using topological and quantum chemical parameters: A similarity based study. Chemosphere 31:2529–2546

    CAS  Google Scholar 

  98. Basak SC, Mills DR, Balaban AT, Gute BD (2001) Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: a hierarchical QSAR approach. J Chem Inf Comput Sci 41:671–678

    CAS  Google Scholar 

  99. Helma C (2005) lazar: Lazy Structure – Activity Relationships for toxicity prediction. In: Helma C (ed) Predictive Toxicology, Taylor and Francis, Boca Raton, FL

    Google Scholar 

  100. Nakadate M (1998) Toxicity prediction of chemicals based on structure activity relationships. Toxicol Lett 102–103:627–629

    Google Scholar 

  101. Fan M, Byrd C, Compadre CM, Compadre RL (1998) Comparison of CoMFA models for Salmonella typhimurium TA98, TA100, TA98 + S9 and TA100 + S9 mutagenicity of nitroaromatics. SAR QSAR Environ Res 9:187–215

    CAS  Google Scholar 

  102. Benigni R, Passerini L, Gallo G, Giorgi F, Cotta-Ramusino M (1998) QSAR models for discriminating between mutagenic and nonmutagenic aromatic and heteroaromatic amines. Environ Mol Mutagen 32:75–83

    CAS  Google Scholar 

  103. Kadlubar FF, Beland FA (1985) Chemical properties of ultimate carcinogenic metabolites of arylamines and arylamides. In: Harvey RG (ed) Polycyclic hydrocarbons and carcinogenesis, American Chemical Society, Washington, DC

    Google Scholar 

  104. Cash GG, Anderson B, Mayo K, Bogaczyk S, Tunkel J (2005). Predicting genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices. Mutat Res 585:170–183

    CAS  Google Scholar 

  105. Cariello NF, Wilson JD, Britt BH, Wedd DJ, Burlinson B, Gombar V (2002) Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Mutagenesis 17:321–329

    CAS  Google Scholar 

  106. White AC, Mueller RA, Gallavan RH, Aaron S, Wilson AGE (2003) A multiple in silico program approach for the prediction of mutagenicity from chemical structure. Mutat Res 539:77–89

    CAS  Google Scholar 

  107. Rosenkranz HS, Ennever FK, Dimayuga M, Klopman G (1990) Significant differences in the structural basis of the induction of sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells. Environ Mol Mutagen 16:149–177

    CAS  Google Scholar 

  108. Rosenkranz HS (2004) SAR modeling of genotoxic phenomena: the consequence on predictive performance of deviation from a unity ratio of genotoxicants/non-genotoxicants. Mutat Res 559:67–71

    CAS  Google Scholar 

  109. Contrera JF, Matthews EJ, Kruhlak NL, Benz RD (2005) In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software. Regul Toxicol Pharmacol 43:313–323

    CAS  Google Scholar 

  110. OECD (2007) Guidance document on the validation of (Quantitative) structure-activity relationship [(Q)SAR] models. Series on Testing and Assessment No. 69, Paris, (ENV/JM/MONO(2007)2). Available at http://www.oecd.org/dataoecd/55/35/38130292.pdf

  111. Kulkarni SA, Zhu J (2008) Integrated approach to assess the domain of applicability of some commercial (Q)SAR models. SAR QSAR Env Res 19:39–54

    CAS  Google Scholar 

  112. Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, Mekenyan O (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45:839–849

    CAS  Google Scholar 

  113. Schultz TW, Hewitt M, Netzeva TI, Cronin MTD (2007) Assessing applicability domains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci 26:238–254

    CAS  Google Scholar 

  114. Kirkland DJ, Aardema M, Banduhn N, Carmichael P, Fautz R, Meunier JR, Pfuhler S (2007) In vitro approaches to develop weight of evidence (WoE) and mode of action (MoA) discussions with positive in vitro genotoxicity results. Mutagenesis 22:161–175

    Google Scholar 

  115. Gramatica P, Consonni V, Pavan M (2003) Prediction of aromatic amines mutagenicity from theoretical molecular descriptors. SAR QSAR Environ Res 14:237–250

    CAS  Google Scholar 

  116. Glende C, Schmitt H, Erdinger L, Engelhardt G, Boche G (2001) Transformation of mutagenic aromatic amines into nonmutagenic species by alkyl substituents. Part I. Alkylation ortho to the amino function. Mutat Res 498:19–37

    CAS  Google Scholar 

  117. Glende C, Klein M, Schmitt H, Erdinger L, Boche G (2002) Transformation of mutagenic aromatic amines into non-mutagenic species by alkyl substituents. Part II. Alkylation far away from the amino function. Mutat Res 515:15–38

    CAS  Google Scholar 

  118. Kirkland D, Aardema M, Henderson L, Mueller L (2005) Evaluation of the ability of a battery of 3 in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity. Mutat Res 584:1–256

    Google Scholar 

  119. Cahill PA, Knight AW, Billinton N, Barker MG, Walsh L, Keenan PO, Williams CV, Tweats DJ, Walmsley RM (2004) The GreenScreen genotoxicity assay: a screening validation programme. Mutagenesis 19:105–119

    CAS  Google Scholar 

  120. Matthews EJ, Kruhlak NL, Cimino MC, Benz RD, Contrera JF (2006) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods. Regul Toxicol Pharmacol 44:97–110

    CAS  Google Scholar 

  121. QSAR Application Toolbox. OECD. www.oecd.org/document/23/0,3343,en_2649_4379_33957015_1_1_1_1,00.html (accessed April 2008)

Download references

Acknowledgments

The authors thank Dr. Bhaja, K. Padhi, and Dr. Guosheng Chen for critical review of this chapter, and Dr. Eeva Leinala and Christine Norman of Health Canada for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil A. Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kulkarni, S.A., Zhu, J. (2009). (Q)SAR Models for Genotoxicity Assessment. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_2

Download citation

Publish with us

Policies and ethics