Skip to main content

Bioaccumulation of Polar and Ionizable Compounds in Plants

  • Chapter
  • First Online:
Ecotoxicology Modeling

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

The uptake of neutral and ionizable organic compounds from soil into plants is studied using mathematical models. The phase equilibrium between soil and plant cells of neutral compounds is calculated from partition coefficients, while for ionizable compounds, the steady state of the Fick–Nernst–Planck flux equation is applied. The calculations indicate biomagnification of neutral, polar, and nonvolatile compounds in leaves and fruits of plants. For electrolytes, several additional effects impact bioaccumulation, namely dissociation, ion trap effect, and electrical attraction or repulsion. For ionizable compounds, the effects of p​K a and pH partitioning are more important than lipophilicity. Generally, dissociation leads to reduced bioaccumulation in plants, but the calculations also predict a high potential for some combinations of environmental and physicochemical properties. Weak acids (p​K a 2–6) may accumulate in leaves and fruits of plants when the soil is acidic due to the ion trap effect. Weak bases (p​K a 6–10) have a very high potential for accumulation when the soil is alkaline. The model predictions are supported by various experimental findings. However, the bioaccumulation of weak bases from alkaline soils has not yet been validated by field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14: 257–297

    Article  CAS  Google Scholar 

  2. Travis CC, Hattemer-Frey HA, Arms AA (1988) Relationship between dietary intake of organic chemicals and their concentrations in human adipose tissue and breast milk. Arch Environ Contam Toxicol 17: 473–478

    Article  CAS  Google Scholar 

  3. Czub G, McLachlan MS (2004) Bioaccumulation potential of persistent organic chemicals in humans. Environ Sci Technol 38: 2406–2412

    Article  CAS  Google Scholar 

  4. EC (1996/2003). European Commission. Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on Risk Assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market; European Communities: Italy (1st edn 1996; 2nd edn. 2003). http://ecb.jrc.it/documents/TECHNICAL\_GUIDANCE\_DOCUMENT/EDITION\_2/

  5. US EPA United States Environmental Protection Agency (1976) Toxic substances control act. Washington, DC

    Google Scholar 

  6. Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ Pollut 110: 375–391

    Article  CAS  Google Scholar 

  7. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317: 236–239

    Article  CAS  Google Scholar 

  8. Mackay D (1979) Finding fugacity feasible. Environ Sci Technol 13: 1218–1223

    Article  CAS  Google Scholar 

  9. De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F (1974) Commentary. Lysosomotropic agents. Biochem Pharmacol 23: 2495–2531

    Article  Google Scholar 

  10. Trapp S, Horobin RW (2005) A predictive model for the selective accumulation of chemicals in tumor cells. Eur Biophys J 34: 959–966

    Article  CAS  Google Scholar 

  11. Zarfl C, Matthies M, Klasmeier J (2008) A mechanistical model for the uptake of sulfonamides by bacteria. Chemosphere 70: 753–760

    Article  CAS  Google Scholar 

  12. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: Fundamentals and applications in chemistry and biology. American Chemical Society, Washington DC

    Google Scholar 

  13. Versluijs CW, Koops R, Kreule P, Waitz MFW (1998) The accumulation of soil contaminants in crops, location-specific calculation based on the CSOIL module, Part 1: Evaluation and suggestion for model development. RIVM Report No 711 701 008, Bilthoven, NL

    Google Scholar 

  14. Trapp S, Matthies M, Scheunert I, Topp EM (1990) Modeling the bioconcentration of organic chemicals in plants. Environ Sci Technol 24: 1246–1251

    Article  CAS  Google Scholar 

  15. Hung H, Mackay D (1997) A novel and simple model for the uptake of organic chemicals from soil. Chemosphere 35: 959–977

    Article  CAS  Google Scholar 

  16. Paterson S, Mackay D, Mc Farlane C (1994) A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28: 2259–2266

    Article  CAS  Google Scholar 

  17. Trapp S, Mc Farlane JC, Matthies M (1994) Model for uptake of xenobiotics into plants – Validation with bromacil experiments. Environ Toxicol Chem 13: 413–422

    Article  CAS  Google Scholar 

  18. Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29: 2333–2338; Erratum 30: 360

    Google Scholar 

  19. Trapp S (2002) Dynamic root uptake model for neutral lipophilic organics. Environ Toxicol Chem 21: 203–206

    Article  CAS  Google Scholar 

  20. Trapp S, Cammarano A, Capri E, Reichenberg F, Mayer P (2007) Diffusion of PAH in potato and carrot slices and application for a potato model. Environ Sci Technol 41: 3103–3108

    Article  CAS  Google Scholar 

  21. Trapp S, Rasmussen D, Samsøe-Petersen L (2003) Fruit Tree model for uptake of organic compounds from coil. SAR QSAR Environ Res 14: 17–26

    Article  CAS  Google Scholar 

  22. Trapp S (2007) Fruit tree model for uptake of organic compounds from soil and air. SAR QSAR Environ Res 18: 367–387

    Article  CAS  Google Scholar 

  23. Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin

    Google Scholar 

  24. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants. Environ Toxicol Chem 25: 1239–1245

    Article  CAS  Google Scholar 

  25. Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10: 833–846

    Article  CAS  Google Scholar 

  26. Schwarzenbach R, Westall J (1981) Transport of nonpolar organic compounds from surface water to groundwater: Laboratory sorption studies. Environ Sci Technol 15: 1360–1367

    Article  CAS  Google Scholar 

  27. Briggs GG, Bromilow RH, Evans AA (1982) Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci 13: 495–504

    Article  CAS  Google Scholar 

  28. Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32: 3379–3385

    Article  CAS  Google Scholar 

  29. Wang M-J, Jones K (1994) Uptake of chlorobenzenes by carrots from spiked and sewage-sludge amended soil. Environ Sci Technol 28: 1260–1267

    Article  CAS  Google Scholar 

  30. Trapp S, Matthies M (1997) Modeling volatilization of PCDD/F from soil and uptake into vegetation. Environ Sci Technol 31: 71–74

    Article  CAS  Google Scholar 

  31. Jones KC, DuarteDavidson R (1997) Transfers of airborne PCDD/Fs to bulk deposition collectors and herbage. Environ Sci Technol 31: 2937–2943

    Article  CAS  Google Scholar 

  32. Trapp S, Schwartz S (2000) Proposals to overcome limitations in the EU chemical risk assessment scheme. Chemosphere 41: 965–971

    Article  CAS  Google Scholar 

  33. Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11: 33–39

    Article  CAS  Google Scholar 

  34. Kleier DA (1988) Phloem mobility of xenobiotics. Plant Physiol 86: 803–810

    Article  CAS  Google Scholar 

  35. Satchivi NM, Stoller EW, Wax LM, Briskin DP (2000) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application I. Conceptual foundation for model development. Pest Biochem Physiol 68: 67–84

    CAS  Google Scholar 

  36. Satchivi NM, Stoller EW, Wax LM, Briskin DP (2000) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application. II. Model validation. Pest Biochem Physiol 68: 85–95

    CAS  Google Scholar 

  37. Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56: 767–778

    Article  CAS  Google Scholar 

  38. Henderson LJ (1908) Concerning the relationship between the strength of acids and their capacity to preserve neutrality. J Physiol 21: 173–179

    CAS  Google Scholar 

  39. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen (The theory of electrolytes. I. Lowering of freezing point and related phenomena). Physikalische Zeitschrift 24: 185–206

    CAS  Google Scholar 

  40. Appelo CAJ, Postma D (1999) Geochemistry and groundwater pollution, 4th edn. Balkema, Rotterdam, NL

    Google Scholar 

  41. Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 127: 37–60

    Article  Google Scholar 

  42. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108: 37–77

    CAS  Google Scholar 

  43. Briggs GE, Hope AB, Robertson RN (1961) Electrolytes and plant cells. In: James WO (ed) Botanical monographs, Vol. 1. Blackwell Scientific, Oxford

    Google Scholar 

  44. Nernst W (1889) Die elektrische Wirksamkeit der Jonen. Z Physik Chem 4: 129–181

    Google Scholar 

  45. Franco A, Trapp S (2008) Estimation of the soil water partition coefficient normalized to organic carbon for ionizable organic chemicals. Environ Toxicol Chem 27(10): 1995–2004

    Article  CAS  Google Scholar 

  46. Schopfer P, Brennicke A (1999) Pflanzenphysiologie, 5th edn. Springer, Berlin

    Google Scholar 

  47. Raven JA (1975) Transport of indolacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74:163–172

    Article  CAS  Google Scholar 

  48. Fu W, Franco A, Trapp S (2009) Methods for estimating the bioconcentration factor (BCF) of ionizable organic chemicals. Environ Toxicol Chem 28(7), in print

    Google Scholar 

  49. Hsu FC, Kleier DA (1990) Phloem mobility of xenobiotics. III. Sensitivity of unified model to plant parameters and application to patented chemical hybridizing agents. Weed Sci 38: 315–323

    CAS  Google Scholar 

  50. Grayson BT, Kleier DA (1990) Phloem mobility of xenobiotics. IV. Modelling of pesticide movement in plants. Pestic Sci 30: 67–79

    CAS  Google Scholar 

  51. Hsu FC, Kleier DA (1996) Phloem mobility of xenobiotics. VIII. A short review. J Exp Botany 47: 1265–1271

    CAS  Google Scholar 

  52. Sandermann H (1994) Higher plant metabolism of xenobiotics: The ‘green liver’ concept. Pharmacogenetics 4: 225–241

    Article  CAS  Google Scholar 

  53. Komossa D, Langebartels C, Sandermann H Jr (1995) Metabolic processes for organic chemicals in plants. In: Trapp S, Mc Farlane C (eds), ‘Plant contamination – modeling and simulation of organic chemical processes’. Lewis Publisher, Boca Raton, FL

    Google Scholar 

  54. Larsen M, Ucisik A, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39: 2135–2142

    Article  CAS  Google Scholar 

  55. Trapp S, Karlson U (2001) Aspects of phytoremediation of organic compounds. J Soils Sed 1: 37–43

    Article  CAS  Google Scholar 

  56. Rein A, Fernqvist MM, Mayer P, Trapp S, Bittens M, Karlson U (2007) Degradation of PCB congeners by bacterial strains – Determination of kinetic parameters and modelling of rhizoremediation. Appl Microbiol Biotechnol 77: 469–481

    Article  CAS  Google Scholar 

  57. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2005) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22: 583–588

    Article  Google Scholar 

  58. McLachlan MS (1999) Framework for the interpretation of measurements of SOCs in plants. Environ Sci Technol 33: 1799–1804

    Article  CAS  Google Scholar 

  59. Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39: 154–160

    Article  CAS  Google Scholar 

  60. Ishizaki J, Yokogawa K, Ichimura F, Ohkuma S (2000) Uptake of imipramine in rat liver lysosomes in vitro and its inhibition by basic drugs. J Pharmacol Exp Ther 294: 1088–1098

    CAS  Google Scholar 

  61. Rikken MGJ, Lijzen JPA, Cornelese AA (2001) Evaluation of model concepts on human exposure. Proposals for updating the most relevant exposure routes of CSOIL. RIVM report 711 701 022, Bilthoven, NL

    Google Scholar 

  62. Fryer ME, Collins CD (2003) Model intercomparison for the uptake of organic chemicals by plants. Environ Sci Technol 37: 1617–1624

    Article  Google Scholar 

  63. Doucette WJ, Chard TJK, Moore BJ, Staudt WJ, Headley JV (2005) Uptake of sulfolane and diisopropanolamine (DIPA) by cattails (Typha latifolia). Microchemical J 81: 41–49

    Article  CAS  Google Scholar 

  64. Migliori L, Brambilla G, Cozzolino S, Gaudio L (1995) Effects on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativa and Zea Mays). Agric Ecosyst Environ 52: 103–110

    Article  Google Scholar 

  65. Migliori L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996) Effect of sulphadimethoxine contamination on barley (Hordeum disticuhm L., Poaceae, Liliopsidia). Agric Ecosys Environ 60: 121–128

    Article  Google Scholar 

  66. Migliori L, Civitareale C, Brambilla G, Cozzolino S, Casoria P, Gaudio L (1997) Effect of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.). Agric Ecosys Environ 65: 163–168

    Article  Google Scholar 

  67. Fahl GM, Kreft L, Altenburger R, Faust M, Boedeker W, Grimme LH (1995) pH-dependent sorption, bioconcentration and algal toxicity of sufonylurea herbicides. Aquat Toxicol 31: 175–187

    Article  CAS  Google Scholar 

  68. De Carvalho RF, Bromilow RH, Greenwood R (2007) Uptake of pesticides from water by curly waterweed Lagarosiphon major and lesser duckweed Lemna minor. Pest Manag Sci 63: 789–797

    Article  Google Scholar 

  69. Mc Farlane JC (1995) Anatomy and physiology of plant conductive systems. In Trapp S, Mc Farlane JC (eds) Plant contamination – Modeling and simulation of organic chemicals processes. Lewis Pubishers, Boca Raton, FL

    Google Scholar 

  70. Briggs GG, Rigitano RLO, Bromilow RH (1987) Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19: 101–112

    Article  CAS  Google Scholar 

  71. Rigitano R, Bromilow R, Briggs G, Chamberlain K (1987) Phloem translocation of weak acids in Ricinus communis. Pestic Sci 19: 113–133

    Article  CAS  Google Scholar 

  72. Bromilow RLO, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In Trapp S, Mc Farlane JC (eds) Plant contamination – Modeling and simulation of organic chemicals processes. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  73. Chamberlain K, Patel S, Bromilow RH (1998) Uptake by roots and translocation to shoots of two morpholine fungicides in barley. Pestic Sci 54: 1–7

    Article  CAS  Google Scholar 

  74. Inoue J, Chamberlain K, Bromilow RH (1998) Physico-chemical factors affecting the uptake by roots and translocation to shoots of amine bases in barley. Pestic Sci 54: 8–21

    Article  CAS  Google Scholar 

  75. Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54: 2288–2297

    Article  CAS  Google Scholar 

  76. Travis C, Arms A (1988) Bioconcentration in beef, milk and vegetation. Environ Sci Technol 22: 271–274

    Article  CAS  Google Scholar 

  77. BVL Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2006) National report on pesticide residues in foodstuff. Available online at http://www.bvl.bund.de/berichtpsm (accessed March 17, 2006)

  78. Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43: 324–329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from the European Union Sixth Framework Programme of Research, Thematic Priority 6 (Global change and ecosystems), project 2-FUN (contract no. GOCE-CT-2007-036976) and project OSIRIS (contract no. GOCE-ET-2007-037017). Many thanks to our editor, James Devillers, for his initiative and engagement. Thanks to Hans-Christian Lützhøft, Wenjing Fu, Charlotte N. Legind and Antonio Franco for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Trapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Trapp, S. (2009). Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_11

Download citation

Publish with us

Policies and ethics