Skip to main content

Measurement of Flow and Viscoelastic Properties

  • Chapter
Rheology of Fluid and Semisolid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

Techniques for measuring rheological properties of polymeric materials have been well described previously by others (e.g., Whorlow, 1980; Macosko, 1994). The text by (1963) is still a valuable reference that explains in detail many facets of earlier attempts to measure rheological properties of polymeric materials as well as basic equations of viscometric flows. The unique nature of fluid foods prompted this author to review both the rheological properties of fluid foods and their measurement about 30 years ago (Rao, 1977a, 1977b). Subsequent efforts on rheology of foods include those of (1992, 2005) and (1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Khalik, S. I., Hasseger, O., and Bird, R. B. 1974. Prediction of melt viscosity from viscosity data. Polym. Eng. Sci. 14: 859–867.

    Article  CAS  Google Scholar 

  • Abdelrahim, K. A., Ramaswamy, H. S., and Van de Voort, F. R. 1995. Rheological properties of starch solutions under aseptic processing temperatures. Food Res. Int. 28: 473–480.

    Article  CAS  Google Scholar 

  • Arola, D. F., Powell, R. L., Barrall, G. A. and McCarthy, M. J. 1999. Pointwise observations for rheological characterization using nuclear magnetic resonance imaging. J. Rheol. 43: 9–30.

    Article  CAS  Google Scholar 

  • Barnes, H. A., Hutton, J. F., and Walters, K. 1989. An Introduction to Rheology, Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

  • Barnes, H. A. and Carnali, J. O. 1990. The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. J. Rheol. 34: 841–865.

    Article  Google Scholar 

  • Bird, R. B., Hasseger, O., and Abdel-Khalik S. I. 1974. Co-rotational rheological models and the Goddard expansion. AIChE J 20: 1041–1066.

    Article  CAS  Google Scholar 

  • Bird R. B., Armstrong, R. C., and Hasseger, O. 1977. Dynamics of Polymeric Liquids. John Wiley, New York

    Google Scholar 

  • Bistany, K. L. and Kokini, J. L. 1983. Dynamic viscoelastic properties of foods in texture control. J. Rheol. 27: 605–620.

    Article  Google Scholar 

  • Bongenaar, J. J. T., Kossen, N. W. F., Metz, B., and Meijboom, F. W. 1973. A method for characterizing the rheological properties of viscous fermentation broths. Biotechnol. Bioeng. 15: 201–206.

    Article  Google Scholar 

  • Briggs, J. L. and Steffe, J. F. 1996. Mixer viscometer constant (k’) for the Brookfield small sample adapter and flag impeller. J. Texture Stud. 27: 671–677.

    Article  Google Scholar 

  • Brodkey, R. S. 1967. The Phenomena of Fluid Motions, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Campanella, O. H. and Peleg, M. 1987. Analysis of the transient flow of mayonnaise in a coaxial cylinder viscometer. J. Rheol. 31: 439–452.

    Article  Google Scholar 

  • Campanella, O. H., Popplewell, L. M., Rosenau, J. R., and Peleg, M. 1987. Elongational viscosity measurements of melting American process cheese. J. Food Sci. 52: 1249–1251.

    Article  Google Scholar 

  • Cannon Instrument Co. 1982. Instructions for the Use of the Cannon-Ubbelohde Dilution Viscometer, State College, PA.

    Google Scholar 

  • Casiraghi, E. M., Bagley, E. B., and Christianson, D. D. 1985. Behavior of mozzarella, cheddar and processed cheese spread in lubricated and bonded uniaxial compression. J. Texture Stud. 16: 281–301.

    Article  Google Scholar 

  • Castell-Perez, M. E., Steffe, J. F., and Morgan, R. G. 1987. Actaptation of a Brookfield (HBTD) viscometer for mixer viscometer studies. J. Texture Stud. 18: 359–365.

    Article  Google Scholar 

  • Chamberlain, E. K. 1999. Rheological properties of acid converted waxy maize starches: effect of solvent, concentration and dissolution time. Ph.D. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Champenois, Y. C., Rao, M. A., and Walker, L. P. 1998. Influence of-amylase on the viscoelastic properties of starch-gluten pastes and gels. J. Sci. Food Agric. 127–133.

    Google Scholar 

  • Chatraei, S. H., Macosko, C. W., and Winter, H. H. 1981. A new biaxial extensional rheometer. J. Rheol. 25: 433–443.

    Article  CAS  Google Scholar 

  • Cheng, D. C.-H. 1986. Yield stress: a time-dependent property and how to measure it. Rheol. Acta, 25: 542–554.

    Article  CAS  Google Scholar 

  • Choi, Y. J., McCarthy, K. L., and McCarthy, M. J. 2002. Tomographie techniques for measuring fluid flow properties. J. Food Sci. 67(7): 2718–2724.

    Article  CAS  Google Scholar 

  • Clark, R. 1997. Evaluating syrups using extensional viscosity. Food Technol. 511: 49–52.

    Google Scholar 

  • Clark, A. H. and Ross-Murphy, S. B. 1987. Structural and mechanical properties of biopoly. gels. Adv. Polym. Sci. 83: 57–192

    Article  CAS  Google Scholar 

  • Cogswell, F. N. 1972. Converging flow of polym. melts in extrusion dies. Polym. Eng. Sci. 12: 64–73.

    Article  CAS  Google Scholar 

  • Cogswell, F. N. 1978. Converging flow and stretching flow: a compilation. J. Non-Newtonian Fluid Mech. 4: 23–38.

    Article  CAS  Google Scholar 

  • Comby, S., Doublier, J. L., and Lefebvre, J. 1986. Stress-relaxation study of high-methoxyl pectin gels, in Gums and Stabilisers for the Food Industry 3, eds., G. O. Phillips, D. J. Wedlock, and P. A. Williams, pp. 203–212. Elsevier Science Publishers, New York.

    Google Scholar 

  • Cox, W. P. and Merz, E. H. 1958. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 28: 619–622.

    Article  CAS  Google Scholar 

  • Dail, R. V. and Steffe, J. F. 1990. Rheological characterization of crosslinked waxy maize starch solutions under low acid aseptic processing conditions using tube viscometry techniques. J. Food Sci. 55: 1660–1665.

    Article  Google Scholar 

  • Da Silva, P. M. S., Oliveira, J. C., and Rao, M. A. 1997. The effect of granule size distribution on the rheological behavior of heated modified and unmodified maize starch dispersions. J. Texture Stud. 28: 123–138.

    Article  Google Scholar 

  • Dealy, J. M. 1982. Rheometers for Molten Polymers. A Practical Guide to Testing and Property Measurement, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Dickie, A. M. and Kokini, J. L. 1982. Use of the Bird-Leider equation in food rheology. J. Food Process Eng. 5: 157–174.

    Article  Google Scholar 

  • Diehl, K. C., Hamann, D. D., and Whitfield, J. K. 1979. Structural failure in selected raw fruits and vegetables. J. Text. Stud. 10: 371–400.

    Article  Google Scholar 

  • Dogan, N., McCarthy, M. J., and Powell, R. L. 2002. In-line measurement of rheological parameters and modeling of apparent wall slip in diced tomato suspensions using ultrasonics. J. Food Sci. 67(6): 2235–2240.

    Article  CAS  Google Scholar 

  • Dogan, N., McCarthy, M. J., and Powell, R. L. 2003. Comparison of in-line consistency measurement of tomato concentrates using ultrasonics and capillary methods. J. Food Process Eng. 25(6): 571–587.

    Article  Google Scholar 

  • Doraiswamy, D., Mujumdar, A. N., Tsao, I., Beris, A. N., Danforth, S. C., and Metzner, A. B. 1991. The Cox-Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J. Rheol. 35: 647–685.

    Article  CAS  Google Scholar 

  • Dzuy, N. Q. and Boger, D. V. 1983. Yield stress measurement for concentrated suspensions. J. Rheol. 27: 321–349.

    Article  Google Scholar 

  • Dzuy, N. Q. and Boger, D. V. 1985. Direct yield stress measurement with the vane method. J. Rheol. 29: 335–347.

    Article  Google Scholar 

  • Elliott, J. H. and Ganz, A. J. 1971. Modification of food characteristics with cellulose hydrocolloids, I. Rheological characterization of an organoleptic property. J. Texture Stud. 2: 220–229.

    Article  CAS  Google Scholar 

  • Elliott, J. H. and Ganz, A. J. 1977. Salad dressings-preliminary rheological characterization. J. Texture Stud. 8: 359–371.

    Article  CAS  Google Scholar 

  • Ferry, J. D. 1980. Viscoelastic Properties of Polymers, John Wiley, New York

    Google Scholar 

  • Genovese, D. B. and Rao, M. A. 2003a. Vane yield stress of starch dispersions. J. Food Sci. 68(7): 2295–2301.

    Article  CAS  Google Scholar 

  • Genovese, D. B. and Rao, M. A. 2003b. Apparent viscosity and first normal stress of starch dispersions: role of continuous and dispersed phases, and prediction with the Goddard-Miller model. Appl. Rheol. 13(4): 183–190.

    CAS  Google Scholar 

  • Genovese, D. B., Acquarone, V. M., Youn, K.-S., and Rao, M. A. 2004. Influence of fructose and sucrose on small and large deformation rheological behavior of heated Amioca starch dispersions. Food Sci. Technol.Int. 10(1): 51–57.

    Article  CAS  Google Scholar 

  • Giboreau, A., Cuvelier, G., and Launay, B. 1994. Rheological behavior of three biopolymer/water systems with emphasis on yield stress and viscoelastic properties. J. Texture Stud., 25: 119–137.

    Article  Google Scholar 

  • Grikshtas, R. and Rao, M. A. 1993. Determination of slip velocities in a concentric cylinder viscometer with Mooney and Kiljanski methods. J. Texture Stud. 24: 173–184.

    Article  Google Scholar 

  • Grosso, C. R. F. and Rao, M. A. 1998. Dynamic rheology of structure development in low-methoxyl pectin+Ca2++sugar gels. Food Hydrocolloids 12: 357–363.

    Article  CAS  Google Scholar 

  • Hamann, D. D. 1983. Structural failure in solid foods, in Physical Properties of Foods, eds. M. Peleg, and E. B. Bagley, pp. 351–383 AVI Publ., Westport, CT.

    Google Scholar 

  • Hamann, D. D. 1987. Methods for measurement of rheological changes during thermally induced gelation of proteins. Food Technol. 41(3): 100, 102–108.

    CAS  Google Scholar 

  • Hansen, L. M., Hoseney, R. C., and Faubion, J. M. 1990. Oscillatory probe rheometry as a tool for determining the rheological properties of starch-water systems. J. Texture Stud. 21: 213–224.

    Article  Google Scholar 

  • James, A. E., Williams, D. J. A., and Williams, P. R. 1987. Direct measurement of static yield properties of cohesive suspensions. Rheol. Acta 26: 437–446.

    Article  CAS  Google Scholar 

  • Jao, Y. C., Chen, A. H., Lewandowski, D., and Irwin, W. E. 1978. Engineering analysis of soy dough rheology in extrusion. J. Food Process Eng. 2: 97–112.

    Article  Google Scholar 

  • Keentok, M. 1982. The measurement of the yield stress of liquids. Rheol. Acta 21: 325–332.

    Article  CAS  Google Scholar 

  • Khagram, M., Gupta, R. K., and Sridhar, T. 1985. Extensional viscosity of xanthan gum solutions. J. Rheol. 29: 191–207.

    Article  CAS  Google Scholar 

  • Kiljanski, T. 1989. A method for correction of the wall-slip effect in a Couette rheometer. Rheol. Acta 28: 61–64.

    Article  CAS  Google Scholar 

  • Kokini, J. L. and Dickie, A. 1981. An attempt to identify and model transient viscoelastic flow in foods. J. Texture Stud. 12: 539–557.

    Article  Google Scholar 

  • Komatsu, H. and Sherman, P. 1974. A modified rigidity modulus technique for studying the rheological properties of w/o emulsions containing microcrystalline wax. J. Texture Stud. 5: 97–104.

    Article  Google Scholar 

  • Kulicke, W.-M. and Porter, R. S. 1980. Relation between steady shear flow and dynamic rheology. Rheol. Acta 19: 601–605.

    Article  CAS  Google Scholar 

  • Lai, K. P., Steffe, J. F, and Ng, P. K. W. 2000. Average shear rates in the Rapid Visco Analyser (RVA) mixing system. Cereal Chem. 77(6): 714–716.

    Article  CAS  Google Scholar 

  • Larson, R. G. 1985. Constitutive relationships for polymeric materials with power-law distributions of relaxation times. Rheol. Acta 24: 327–334.

    Article  CAS  Google Scholar 

  • Leider, P. J. and Bird, R. B. 1974. Squeezing flow between parallel disks-I. Theoretical analysis. Ind. Eng. Chem. Fundam. 13: 336–341.

    Article  CAS  Google Scholar 

  • Leppard, W. R. and Christiansen, E. B. 1975. Transient viscoelastic flow of polymer solutions. Am. Inst. Chem. Engrs. J. 21: 999–1006.

    CAS  Google Scholar 

  • Liao, H.-J. 1998. Simulation of continuous sterilization of fluid food products: the role of thermorheological behavior of starch dispersion and process, Ph.D. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Lin, K. S. C. and Aklonis, J. J. 1980. Evaluation of the stress-relaxation modulus of materials with rapid relaxation rates. J. Appl. Phys. 51: 5125–5130.

    Article  CAS  Google Scholar 

  • Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1993. Viscoelastic behavior of mixtures of locust bean gum and pectin dispersions. J. Food Eng. 18: 211–228.

    Article  Google Scholar 

  • Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1994. Influence of temperature on dynamic and steady shear rheology of pectin dispersions. Carbohydr. Polym. 23: 77–87.

    Article  CAS  Google Scholar 

  • Lopes da Silva, J. A., Rao, M. A., and Fu, J.-T. 1998. Rheology of structure development and loss during gelation and melting, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 111–156, Marcel Dekker, Inc., NY.

    Google Scholar 

  • Ma, L. and Barbosa-Cánovas, G. V. 1995. Instrumentation for the rheological characterization of foods. Food Sci. Technol. Int. 1: 3–17.

    Article  Google Scholar 

  • Macosko, C. W. 1994. Rheology: Principles, Measurements and Applications, VCH Publishers, New York.

    Google Scholar 

  • Maranzano, B. J. and Wagner, N. J. 2002. Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear-thickening transition. J. Chem. Phys. 117: 10291–10302.

    Article  CAS  Google Scholar 

  • Mason, P. L., Bistany, K. L., Puoti, M. G., and Kokini, J. L. 1982. A new empirical model to simulate transient shear stress growth in semi-solid foods. J. Food Process Eng. 6: 219–233.

    Article  Google Scholar 

  • Matsumoto, T., Hitomi, C., and Onogi, S. 1975. Rheological properties of disperse systems of spherical particles in polystyrene solution at long time-scales. Trans. Soc. Rheol. 194: 541.

    Article  Google Scholar 

  • McCarthy, K. L. and Seymour, J. D. 1993. A fundamental approach for the relationship between the Bostwick measurement and Newtonian fluid viscosity. J. Texture Stud. 24(1): 1–10.

    Article  Google Scholar 

  • McCarthy, K. L. and Seymour, J. D. 1994. Gravity current analysis of the Bostwick consistometer for power law foods. J. Texture Stud. 25(2): 207–220.

    Article  Google Scholar 

  • McKelvey, J. N. 1962. Polymer Processing, John Wiley and Sons, New York.

    Google Scholar 

  • Metz, B., Kossen, N. W. F., and van Suijdam, J. C. 1979. The rheology of mould suspensions in Advances in Biochemical Engineering, eds. Ghose, T. K. A. Fiechter, and N. Blakebrough, Vol. 2, pp. 103–156, New York: Springer Verlag.

    Google Scholar 

  • Metzner, A. B. and Otto, R. E. 1957. Agitation of non-Newtonian fluids. Am. Inst. Chem. Eng. J. 3: 3–10.

    CAS  Google Scholar 

  • Michaels, A. S. and Bolger, J. C. 1962. The plastic flow behavior of flocculated kaolin suspensions. Ind. Eng. Chem. Fund. 1: 153–162.

    Article  CAS  Google Scholar 

  • Mills, P. and Kokini, J. L. 1984. Comparison of steady shear and dynamic viscoelastic properties of guar and karaya gums. J. Food Sci. 49: 1–4and 9.

    Article  Google Scholar 

  • Mitchell, J. R. 1984. Rheological techniques, in Food Analysis: Principles and Techniques, eds. D. W. Gruenwedel and J. R. Whitaker, pp. 151–220, Marcel Dekker, New York.

    Google Scholar 

  • Mooney, M. 1931. Explicit formulas for slip and fluidity. J. Rheol. 2: 210–222.

    Article  CAS  Google Scholar 

  • Morris, E. R. 1981. Rheology of hydrocolloids, in Gums and Stabilisers for the Food Industry 2, eds. G. O. Philips, D. J. Wedlock, and P. A. Williams, pp. 57–78, Pergamon Press Ltd., Oxford, Great Britain.

    Google Scholar 

  • Morris, E. R., Cutler, A. N., Ross-Murphy, S. B. and Rees, D. A. 1981. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym. 1: 5–21.

    Article  CAS  Google Scholar 

  • Nicolas, Y. and Paques, M. 2003. Microrheology: an experimental technique to visualize food structure behavior under compression-extension deformation conditions. J Food Sci. 68(6): 1990–1994.

    Article  CAS  Google Scholar 

  • Nussinovitch, A., Kaletunc, G., Normand, M. D., and Peleg, M. 1990. Recoverable work versus asymptotic relaxation modulus in agar, carrageenan and gellan gels. J. Texture Stud. 21: 427–438.

    Article  Google Scholar 

  • Oakenfull, D. 1984. A method for using measurements of shear modulus to estimate the size and thermodynamic stability of junction zones in non-covalently cross-linked gels. J. Food Sci. 49: 1103–1104, 1110.

    Article  CAS  Google Scholar 

  • Oakenfull, D. G., Parker, N. S., and Tanner, R. I. 1989. Method for determining absolute shear modulus of gels from compression tests. J. Texture Stud. 19: 407–417.

    Article  Google Scholar 

  • Okechukwu, P. E., Rao, M. A., Ngoddy, P. O., and McWatters, K. H. 1991. Rheology of sol-gel thermal transition in cowpea flour and starch slurry. J. Food Sci. 56: 1744–1748.

    Article  CAS  Google Scholar 

  • Owen, S. R., Tung, M. A., and Paulson, A. T. 1992. Thermorheological studies of food polymer dispersions. J. Food Eng. 16: 39–53.

    Article  Google Scholar 

  • Padmanabhan, M. 1995. Measurement of extensional viscosity of viscoelastic liquid foods. J. Food Eng. 25: 311–327.

    Article  Google Scholar 

  • Padmanabhan, M. and Bhattacharya, M. 1993. Planar extensional viscosity of corn meal dough. J. Food Eng. 18: 389–411.

    Article  Google Scholar 

  • Peleg, M. 1980. Linearization of relaxation and creep curves of solid biological materials. J. Rheol. 24: 451–463.

    Article  Google Scholar 

  • Perkins, T. T., Smith, D. E., and Chu, S. 1997. Single polymer dynamics in an elongational flow. Science 276: 2016–2021.

    Article  CAS  Google Scholar 

  • Plazek, D. J. 1996. 1995 Bingham medal address: Oh, thermorheological simplicity, wherefore art thou? J. Rheol. 40: 987–1014.

    Article  CAS  Google Scholar 

  • Qiu, C.-G. and Rao, M. A. 1988. Role of pulp content and particle size in yield stress of apple sauce. J. Food Sci. 53: 1165–1170.

    Article  Google Scholar 

  • Qiu, C.-G. and Rao, M. A. 1989. Effect of dispersed phase on the slip coefficient of apple sauce in a concentric cylinder viscometer. J. Texture Stud. 20: 57–70.

    Article  Google Scholar 

  • Rao, M. A. 1975. Measurement of flow properties of food suspensions with a mixer. J. Texture Stud. 6: 533–539.

    Article  Google Scholar 

  • Rao, M. A. 1977a. Rheology of liquid foods-a review. J. Texture Stud. 8: 135–168.

    Article  Google Scholar 

  • Rao, M. A. 1977b. Measurement of flow properties of fluid foods-developments, limitations, and interpretation of phenomena. J. Texture Stud. 8: 257–282.

    Article  Google Scholar 

  • Rao, M. A. 1992. Measurement of viscoelastic properties of fluid and semisolid foods, in Viscoelastic Properties of Food, eds. M. A. Rao and J. F. Steffe, pp. 207–232, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Rao, M. A. 2005. Rheological properties of fluid foods, in Engineering Properties of Foods, eds. M. A. Rao and S. S. H. Rizvi, and A. K. Datta, 3rd ed., pp. 41–99, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1984. Determination of effective shear rates of complex geometries. J. Texture Stud. 15: 327–335.

    Article  Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1992. Rheology of tomato pastes in steady and dynamic shear. J. Texture Stud. 23: 415–425.

    Article  Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1993. Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. J. Food Sci. 58: 876–879.

    Article  CAS  Google Scholar 

  • Rao, M. A., Cooley, H. J., and Liao, H.-J. 1999. High temperature rheology of tomato puree and starch dispersion with a direct-drive viscometer. J. Food Process Eng. 22: 29–40.

    Article  Google Scholar 

  • Rao, V. N. M., Delaney, R. A. M., and Skinner, G. E. 1995. Rheological properties of solid foods, in Engineering Properties of Foods, eds. M. A. Rao and S. S. H. Rizvi, 2nd ed., pp. 55–97, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Rayment, P., Ross-Murphy, S. B., and Ellis, P. R. 1998. Rheological properties of guar galactomannan and rice starch mixtures. II. Creep measurements. Carbohydr. Polym. 35: 55–63.

    Article  CAS  Google Scholar 

  • Rieger, F. and Novak, V. 1973. Power consumption of agitators in highly viscous non-Newtonian liquids. Trans. Inst. Chemi. Eng. 51: 105–111.

    CAS  Google Scholar 

  • Roberts, I. 2003. In-line and on-line rheology measurement of food, in “Texture in Food, Volume 1: Semi-Solid Foods,” pp. 161–182, edited by Brian M. McKenna, Woodhead Publishing Ltd., Cambridge, UK.

    Google Scholar 

  • Saunders, P. R. and Ward, A. G. 1954. An absolute method for the rigidity modulus of gelatine gel, in Proceedings of the Second International Congress on Rheology, ed. V. G. W. Harrison, pp. 284–290. Academic Press, New York.

    Google Scholar 

  • Schlichting, H. 1960. Boundary Layer Theory, McGraw-Hill, New York.

    Google Scholar 

  • Senouci, A. and Smith, A. C. 1988. An experimental study of food melt rheology. I. Shear viscosity using a slit die viscometer and a capillary rheometer. Rheol. Acta 27: 546–554.

    Article  CAS  Google Scholar 

  • Sestak, J., Zitny, R., and Houska, M. 1983. Simple rheological models of food liquids for process design and quality assessment. J. Food Eng. 2: 35–49.

    Article  Google Scholar 

  • Shama, F. and P. Sherman. 1969. The influence of work softening on the viscoelastic properties of butter and margarine. J. Texture Stud. 1: 196–205.

    Article  Google Scholar 

  • Shama, F. and Sherman, P. 1973. Identification of stimuli controlling the sensory evaluation of viscosity. II. Oral methods. J. Texture Stud. 4: 111–118.

    Article  Google Scholar 

  • Sharma, S. K., Hill, A. R., Goff, H. D., and Yada, R. 1989. Measurement of coagulation time and curd firmness of renneted milk using a Nametre viscometer. Milchwissenschaft 44(11): 682–685

    Google Scholar 

  • Sharma, S. K., Hill, A. R., and Mittal, G. S. 1992. Evaluation of methods to measure coagulation time of ultrafiltered milk. Milchwissenschaft 47(11): 701–704.

    Google Scholar 

  • Sherman, P. 1966. The texture of ice cream 3. Rheological properties of mix and melted ice cream. J. Food Sci. 31: 707–716.

    Article  CAS  Google Scholar 

  • Sherman, P. 1970. Industrial Rheology, Academic Press, New York.

    Google Scholar 

  • Sherman, P. and Benton, M. 1980. Influence of skim milk powder/recodan R S ratio on the viscoelasticity of groundnut oil-in-water imitation milks. J. Texture Stud. 11: 1–13.

    Article  Google Scholar 

  • Shomer, I., Rao, M. A., Bourne, M. C., and Levy, D. 1993. Rheological behavior of potato tuber cell suspensions during temperature fluctuations and cellulase treatments. J. Sci. Food. Agric. 63: 245–250.

    Article  CAS  Google Scholar 

  • Smith, T. L., Ferry, J. D., and Schremp, F. W. 1949. Measurement of the mechanical properties of polymer solutions by electromagnetic transducers. J. App. Phys. 20: 144–153.

    Article  CAS  Google Scholar 

  • Sridhar, T., Tirtaatmadja, V., Nguyen, D. A., and Gupta, R. K. 1991. Measurement of extensional viscosity of polymer solutions. J. Non-Newtonian Fluid Mech. 40: 271–280.

    Article  CAS  Google Scholar 

  • Stainsby, G., Ring, S. G., and Chilvers, G. R. 1984. A static method for determining the absolute shear modulus of a syneresing gel. J. Texture Stud. 15: 23–32.

    Article  CAS  Google Scholar 

  • Steffe, J. F. 1996. Rheological Methods in Food Process Engineering, Freeman Press, East Lansing, Michigan.

    Google Scholar 

  • Steiner, E. H. 1958. A new rheological relationship to express the flow properties of melted chocolate. Revue Internationale de la Chocolaterie 13: 290–295.

    Google Scholar 

  • Tamura, M. S., Henderson, J. M., Powell, R. L., and Shoemaker, C. F. 1989. Evaluation of the helical screw rheometer as an on-line viscometer. J. Food Sci. 54: 483–484.

    Article  Google Scholar 

  • Tanner, R. I. 1988. Recoverable elastic strain and swelling ratio, in Rheological Measurements, eds. A. A. Collyer and D. W. Clegg, pp. 93–118, Elsevier Applied Science, New York.

    Google Scholar 

  • Tattiyakul, J. 1997. Studies on granule growth kinetics and characteristics of tapioca starch dispersion during gelatinization using particle size analysis and rheological methods. M. S. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Tattiyakul, J. and Rao, M. A. 2000. Rheological behavior of cross-linked waxy maize starch dispersions during and after heating. Carbohydrate Polymers 43: 215–222.

    Article  CAS  Google Scholar 

  • Truong, V. D. and Daubert, C. R. 2000. Comparative study of large strain methods for assessing failure characteristics of selected food gels. J. Texture Stud. 31: 335–353.

    Article  Google Scholar 

  • Truong, V. D. and Daubert, C. R. 2001. Textural characterization of cheeses using vane rheometry and torsion analysis. J. Food Sci. 66: 716–721.

    Article  CAS  Google Scholar 

  • Van Wazer, J. R., Lyons, J. W., Kim, K. Y, and Colwell, R. E. 1963. Viscosity and Flow Measurement, Interscience Publishers, New York.

    Google Scholar 

  • Vernon Carter, E. J. and Sherman, P. 1980. Rheological properties and applications of mesquite tree Prosopis juliflora gum 2. Rheological properties and stability of o/w emulsions containing mesquite gum. J. Texture Stud. 11: 351–365.

    Article  Google Scholar 

  • Vitali, A. A. and Rao, M. A. 1982. Flow behavior of guava puree as a function of temperature and concentration. J. Texture Stud. 13: 275–289.

    Article  Google Scholar 

  • Whorlow, R. W. 1980a. Rheological Techniques, Ellis Harwood, Chichester, England.

    Google Scholar 

  • Whorlow, R. W. 1980b. Rheological Techniques, Halsted Press, New York.

    Google Scholar 

  • Wood, F. W. and Goff, T. C. 1973. The determination of the effective shear rate in the Brabender Viscograph and in other systems of complex geometry. Die Starke 25: 89–91.

    Article  CAS  Google Scholar 

  • Wu, M. C., Lanier, T. C., and Hamann, D. D. 1985a. Rigidity and viscosity changes of croacker actomyosin during thermal gelation. J. Food Sci. 50: 14–19.

    Article  CAS  Google Scholar 

  • Wu, M. C., Lanier, T. C. and Hamman, D. D. 1985b. Thermal transitions of admixed starch/fish protein systems during heating. J. Food Sci. 50: 20–25.

    Article  Google Scholar 

  • Yang, W. H. and Rao, M. A. 1998. Complex viscosity-temperature master curve of cornstarch dispersion during gelatinization. J. Food Proc. Eng. 21: 191–207.

    Article  Google Scholar 

  • Yoo, B. and Rao, M. A. 1995. Yield stress and relative viscosity of tomato concentrates: effect of total solids and finisher screen size. J. Food Sci. 60: 777–779, 785.

    Article  CAS  Google Scholar 

  • Yoo, B. and Rao, M. A. 1996. Creep and dynamic rheological behavior of tomato concentrates: effect of concentration and finisher screen size. J. Texture Studies 27: 451–459.

    Article  Google Scholar 

  • Yoo, B., Rao, M. A., and Steffe, J. F. 1995. Yield stress of food suspensions with the vane method at controlled shear rate and shear stress. J. Texture Stud. 26: 1–10.

    Article  Google Scholar 

  • Yoshimura, A. and Prud’homme, R. K. 1988a. Wall slip corrections for Couette and parallel disk viscometers. J. Rheol. 32: 53–67.

    Article  CAS  Google Scholar 

  • Yoshimura, A. and Prud’homme, R. K. 1988b. Wall slip effects on dynamic oscillatory measurements. J. Rheol. 32: 575–584.

    Article  CAS  Google Scholar 

  • Youn, K.-S. and Rao, M. A. 2003. Rheology and relationship among rheological parameters of cross-linked waxy maize starch dispersions heated in fructose solutions. J. Food Sci. 68: 187–194.

    Article  CAS  Google Scholar 

  • Zhou, Z., Solomon, M. J., Scales, P. J., and Boger, D. V. 1999. The yield stress of concentrated flocculated suspensions of size distributed particles. J. Rheol. 43: 651–671.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, M.A. (2007). Measurement of Flow and Viscoelastic Properties. In: Rheology of Fluid and Semisolid Foods. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70930-7_3

Download citation

Publish with us

Policies and ethics