Skip to main content

Papillomavirus Transformation

  • Chapter
  • First Online:
DNA Tumor Viruses
  • 1223 Accesses

Abstract

Papillomaviruses are small DNA tumor viruses that induce benign and malignant epithelial tumors. The most prevalent malignant tumor associated with human papillomaviruses (HPV) infection is cervical cancer. The oncogenic potential of papillomaviruses is reflected in their ability to immortalize and transform cells growing in culture. Analysis of these activities has identified three viral oncogenes: E5, E6, and E7. The E5 gene induces transformation by modulating the activity of cell membrane proteins such as growth factor receptors, whereas the E6 and E7 genes target nuclear tumor suppressor proteins such as p53 and the retinoblastoma protein. Studies of these interactions have provided important insights into cell cycle control and signal transduction and may suggest novel strategies to combat papillomavirus-induced cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, J.L., Briggs, M.W., and McCance, D.J. (2000) A mutagenic analysis of the E5 protein of human papillomavirus type 16 reveals that E5 binding to the vacuolar H+-ATPase is not sufficient for biological activity, using mammalian and yeast expression systems. Virology 272, 315–325.

    PubMed  CAS  Google Scholar 

  • Arbeit, J.M., Howley, P.M., and Hanahan, D. (1996) Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc. Natl. Acad. Sci. USA 93, 2930–2935.

    PubMed  CAS  Google Scholar 

  • Ashby, A.D.M., Meagher, L., Campo, M.S., and Finbow, M.E. (2001) E5 transforming proteins of papillomaviruses do not disturb the activity of the vacuolar H+-ATPase. J. Gen. Virol. 82, 2353–2362.

    PubMed  CAS  Google Scholar 

  • Ashrafi, G.H., Pitts, J.D., Faccini, A., McLean, P., O Brien, P.M., Finbow, M.E., and Campo, M.S. (2000) Binding of bovine papillomavirus type 4 E8 to ductin (16 K proteolipid), down-regulation of gap junction intercellular communication and full cell transformation are independent events. J. Gen. Virol. 81, 689–694.

    PubMed  CAS  Google Scholar 

  • Balsitis, S.J., Dick, F., Lee, D., Farrell, L., Kyde, R.K., Griep, A.E., Dyson, N., and Lambert, P.F. (2005) Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J. Virol. 79, 11392–11402.

    PubMed  CAS  Google Scholar 

  • Balsitis, S.J., Sage, J., Duensing, S., Munger, K., Jacks, T., and Lambert, P.F. (2003) Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol. Cell. Biol. 23, 9094–9103.

    PubMed  CAS  Google Scholar 

  • Band, V., DeCaprio, J.A., Delmolino, L., Kulesa, V., and Sager, R. (1991) Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J. Virol. 65, 6671–6676.

    PubMed  CAS  Google Scholar 

  • Banks, L., Edmonds, C., and Vousden, K.H. (1990) Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene 5, 1383–1389.

    PubMed  CAS  Google Scholar 

  • Barbosa, M.S., Edmonds, C., Fisher, C., Schiller, J.T., Lowy, D.R., and Vousden, K.H. (1990) The region of the HPV E7 oncoprotein homologous to adenovirus E1a and SV40 large Tantigen contains separate domains for Rb binding and casein kinase II. EMBO J. 9, 153–160.

    PubMed  CAS  Google Scholar 

  • Barbosa, M.S., Vass, W.C., Lowy, D.R., and Schiller, J.T. (1991) In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential. J. Virol. 65, 292–298.

    PubMed  CAS  Google Scholar 

  • Bedell, M.A., Jones, K.H., Grossman, S.R., and Laimins, L.A. (1989) Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. J. Virol. 63, 1247–1255.

    PubMed  CAS  Google Scholar 

  • Berezutskaya, E., Yu, B., Morozov, A., Raychaudhuri, P., and Bagchi, S. (1997) Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ. 8, 1277–1286.

    PubMed  CAS  Google Scholar 

  • Bernard, B.A., Bailly, C., Lenoir, M.-C., Darmon, M., Thierry, F., and Yaniv, M. (1989) The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J. Virol. 63, 4317–4324.

    PubMed  CAS  Google Scholar 

  • Boshart, M., Gissmann, L., Ikenberg, H., Kleinheinz, A., Scheurlen, W., and zur Hausen, H. (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 3, 1151–1157.

    PubMed  CAS  Google Scholar 

  • Bouvard, V., Storey, A., Pim, D., and Banks, L. (1994) Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J. 13, 5451–5459.

    PubMed  CAS  Google Scholar 

  • Boyer, S.N., Wazer, D.E., and Band, V. (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56, 4620–4624.

    PubMed  CAS  Google Scholar 

  • Brehm, A., Nielsen, S.J., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1999) The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449–2458.

    PubMed  CAS  Google Scholar 

  • Briggs, M.W., Adam, J.L., and McCance, D.J. (2001) The human papillomavirus type 16 E5 protein alters vacuolar H+-ATPase function and stability in Saccharomyces cerevisiae. Virology 280, 169–175.

    PubMed  CAS  Google Scholar 

  • Burgers, W.A., Blanchon, L., Pradhan, S., Launoit, Y.D., Kouzarides, T., and Fuks, F. (2006) Viral oncoproteins target the DNA methyltransferases. Oncogene (ePub PMID 16983344).

    Google Scholar 

  • Burkhardt, A., Willingham, M., Gay, C., Jeang, K.-T., and Schlegel, R. (1989) The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. Virology 170, 334–339.

    PubMed  CAS  Google Scholar 

  • Chang, J.L., Tsao, Y.P., Liu, D.W., Huang, S.J., Lee, W.H., and Chen, S.L. (2001) The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J. Biomed. Sci. 8, 206–213.

    PubMed  CAS  Google Scholar 

  • Chellappan, S., Kraus, V.B., Kroger, B., Munger, K., Howley, P.M., Phelps, W.C., and Nevins, J.R. (1992) Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between the transcription factor E2F and the retinoblastoma gene product. Proc. Natl. Acad. Sci. USA 89, 4549–4553.

    PubMed  CAS  Google Scholar 

  • Chen, J.J., Reid, C.E., Band, V., and Androphy, E.J. (1995) Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269, 529–531.

    PubMed  CAS  Google Scholar 

  • Cheng, S., Schmidt-Grimminger, D.C., Murant, T., Broker, T.R., and Chow, L.T. (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9, 2335–2349.

    PubMed  CAS  Google Scholar 

  • Cohen, B.D., Lowy, D.R., and Schiller, J.T. (1993) The conserved C-terminal domain of the bovine papillomavirus E5 oncoprotein can associate with an alpha-adaptin-like molecule: a possible link between growth factor receptors and viral transformation. Mol. Cell. Biol. 13, 6462–6468.

    PubMed  CAS  Google Scholar 

  • Conrad, M., Bubb, V.J., and Schlegel, R. (1993) The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J. Virol. 67, 6170–6178.

    PubMed  CAS  Google Scholar 

  • Crusius, K., Auvinen, E., and Alonso, A. (1997) Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene 15, 1437–1444.

    PubMed  CAS  Google Scholar 

  • Crusius, K., Auvinen, E., Steuer, B., Gaissert, H., and Alonso, A. (1998) The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp. Cell Res. 241, 76–83.

    PubMed  CAS  Google Scholar 

  • DeFilippis, R.A., Goodwin, E.C., Wu, L., and DiMaio, D. (2003) Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J. Virol. 77, 1551–1563.

    PubMed  CAS  Google Scholar 

  • Demers, G.W., Foster, S.A., Halbert, C.L., and Galloway, D.A. (1994) Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc. Natl. Acad. Sci. USA 91, 4382–4386.

    PubMed  CAS  Google Scholar 

  • Dickson, M.A., Hahn, W.C., Ino, Y., Ronfard, V., Wu, J.Y., Weinberg, R.A., Louis, D.N., Li, F.P., and Rheinwald, J.G. (2000) Human keratinocytes that express hTERT and also bypass a p16INK4a-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447.

    PubMed  CAS  Google Scholar 

  • Disbrow, G.L., Hanover, J.A., and Schlegel, R. (2005) Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J. Virol. 79, 5839–5846.

    PubMed  CAS  Google Scholar 

  • Dowhanick, J.J., McBride, A.A., and Howley, P.M. (1995) Suppression of cellular proliferation by the papillomavirus E2 protein. J. Virol. 69, 7791–7799.

    PubMed  CAS  Google Scholar 

  • Drummond-Barbosa, D.A., Vaillancourt, R.R., Kazlauskas, A., and DiMaio, D. (1995) Ligand-independent activation of the platelet-derived growth factor beta receptor: requirements for bovine papillomavirus E5-induced mitogenic signaling. Mol. Cell. Biol. 15, 2570–2581.

    PubMed  CAS  Google Scholar 

  • Duensing, S., Duensing, A., Crum, C.P., and Munger, K. (2001) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61, 2356–2360.

    PubMed  CAS  Google Scholar 

  • Duensing, S., Duensing, A., Flores, E.R., Do, A., Lambert, P.F., and Munger, K. (2001) Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J. Virol. 75, 7712–7716.

    PubMed  CAS  Google Scholar 

  • Duensing, S., Lee, L.Y., Duensing, A., Basile, J., Piboonniyom, S.O., Gonzalez, S.L., Crum, C.P., and Munger, K. (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl. Acad. Sci. USA 97, 10002–10007.

    PubMed  CAS  Google Scholar 

  • Duensing, S. and Munger, K. (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62, 7075–7082.

    PubMed  CAS  Google Scholar 

  • Duensing, S. and Munger, K. (2003) Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of retinoblastoma protein family members. J. Virol. 77, 12331–12335.

    PubMed  CAS  Google Scholar 

  • Durst, M., Dzarlieva-Petrusevska, R.T., Boukamp, P., Fusenig, N.E., and Gissmann, L. (1987) Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251–256.

    PubMed  CAS  Google Scholar 

  • Durst, M., Gallahan, D., Jay, G., and Rhim, J.S. (1989) Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 173, 767–771.

    PubMed  CAS  Google Scholar 

  • Durst, M., Gissmann, L., Ikenberg, H., and zur Hausen, H. (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl. Acad. Sci. USA 80, 3812–3815.

    PubMed  CAS  Google Scholar 

  • Dyson, N., Howley, P., Munger, K., and Harlow, E. (1989) The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–936.

    PubMed  CAS  Google Scholar 

  • Edmonds, C. and Vousden, K.H. (1989) A point mutational analysis of human papillomavirus type 16 E7 protein. J. Virol. 63, 2650–2656.

    PubMed  CAS  Google Scholar 

  • Faccini, A.M., Cairney, M., Ashrafi, G.H., Finbow, M.E., Campo, M.S., and Pitts, J.D. (1996) The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts. J. Virol. 70, 9041–9045.

    PubMed  CAS  Google Scholar 

  • Favre-Bonvin, A., Reynaud, C., Kretz-Remy, C., and Jalinot, P. (2005) Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome. J. Virol. 79, 4229–4237.

    PubMed  CAS  Google Scholar 

  • Fehrmann, F., Klumpp, D.J., and Laimins, L.A. (2003) Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J. Virol. 77, 2819–2831.

    PubMed  CAS  Google Scholar 

  • Flores, E.R., Allen-Hoffmann, B.L., Lee, D., and Lambert, P.F. (2000) The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J. Virol. 74, 6622–6631.

    PubMed  CAS  Google Scholar 

  • Foster, A.S., Demers, G.W., Etscheid, B.G., and Galloway, D.A. (1994) The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J. Virol. 68, 5698–5705.

    PubMed  CAS  Google Scholar 

  • Foster, S.A. and Galloway, D.A. (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12, 1773–1779.

    PubMed  CAS  Google Scholar 

  • Francis, D.A., Schmid, S.I., and Howley, P.M. (2000) Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J. Virol. 74, 2679–2686.

    PubMed  CAS  Google Scholar 

  • Funk, J.O., Waga, S., Harry, J.B., Espling, E., Stillman, B., and Galloway, D.A. (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11, 2090–2100.

    PubMed  CAS  Google Scholar 

  • Gage, J.R., Meyers, C., and Wettstein, F.O. (1990) The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J. Virol. 64, 723–730.

    PubMed  CAS  Google Scholar 

  • Gao, Q., Singh, L., Kumar, A., Srinivasan, S., Wazer, D.E., and Band, V. (2001) Human papillomavirus type 16 E6-induced degradation of E6TP1 correlates with its ability to immortalize human mammary epithelial cells. J. Virol. 75, 4459–4466.

    PubMed  CAS  Google Scholar 

  • Garcea, R.L. and DiMaio, D. (2007) The Papillomaviruses. In: DNA Tumor Viruses, Pipas, J. and Damania, B., eds. Springer, New York.

    Google Scholar 

  • Genther, S.M., Sterling, S., Duensing, S., Munger, K., Sattler, C., and Lambert, P.F. (2003) Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J. Virol. 77, 2832–2842.

    PubMed  CAS  Google Scholar 

  • Genther Williams, S.M., Disbrow, G.L., Schlegel, R., Lee, D., Threadgill, D.W., and Lambert, P.F. (2005) Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res. 65, 6534–6542.

    PubMed  CAS  Google Scholar 

  • Gewin, L., Myers, H., Kiyono, T., and Galloway, D.A. (2004) Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 18, 2269–2282.

    PubMed  CAS  Google Scholar 

  • Gissmann, L., Wolnik, L., Ikenberg, H., Koldovsky, U., Schnurch, H.G., and zur Hausen, H. (1983) Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc. Natl. Acad. Sci. USA 80, 560–563.

    PubMed  CAS  Google Scholar 

  • Glaunsinger, B.A., Lee, S.S., Thomas, M., Banks, L., and Javier, R. (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19, 5270–5280.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.J., Andresson, T., Sparkowski, J.J., and Schlegel, R. (1992) The BPV-1 E5 protein, the 16 kDa membrane pore-forming protein and the PDGF receptor exist in a complex that is dependent on hydrophobic transmembrane interactions. EMBO J. 11, 4851–4859.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.J., Finbow, M.E., Andresson, T., McLean, P., Smith, K., Bubb, V., and Schlegel, R. (1991) Bovine papillomavirus E5 oncoprotein binds to the 16 K component of vacuolar H(+)-ATPases. Nature 352, 347–349.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.J., Li, W., Wang, L.-M., Heidaran, M.A., Aaronson, S.A., Shinn, R., Schlegel, R., and Pierce, J.H. (1994) The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for platelet-derived growth factor but not other tyrosine kinase-containing receptors to induce cellular transformation. J. Virol. 68, 4432–4441.

    PubMed  CAS  Google Scholar 

  • Gonzalez, S.L., Stremlau, M., He, X., Basile, J.R., and Munger, K. (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75, 7583–7591.

    PubMed  CAS  Google Scholar 

  • Goodwin, E.C. and DiMaio, D. (2000) Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. USA 97, 12513–12518.

    PubMed  CAS  Google Scholar 

  • Goodwin, E.C., Yang, E., Lee, C.-J., Lee, H.-W., DiMaio, D., and Hwang, E.-S. (2000) Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl. Acad. Sci. USA 97, 10978–10983.

    PubMed  CAS  Google Scholar 

  • Gu, Z.-M. and Matlashewski, G. (1995) Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J. Virol. 69, 8051–8056.

    PubMed  CAS  Google Scholar 

  • Halbert, C.L., Demers, G.W., and Galloway, D.A. (1991) The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65, 473–478.

    PubMed  CAS  Google Scholar 

  • Harbour, J.W. and Dean, D.C. (2000) Chromatin remodeling and Rb activity. Curr. Opin. Cell Biol. 12, 685–689.

    PubMed  CAS  Google Scholar 

  • Hawley-Nelson, P., Vousden, K.H., Hubbert, N.L., Lowy, D.R., and Schiller, J.T. (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905–3910.

    PubMed  CAS  Google Scholar 

  • Heck, D.V., Yee, C.L., Howley, P.M., and Munger, K. (1992) Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc. Natl. Acad. Sci. USA 89, 4442–4446.

    PubMed  CAS  Google Scholar 

  • Helt, A.-M., Funk, J.O., and Galloway, D.A. (2002) Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J. Virol. 76, 10559–10568.

    PubMed  CAS  Google Scholar 

  • Helt, A.M. and Galloway, D.A. (2001) Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J. Virol. 75, 6737–6747.

    PubMed  CAS  Google Scholar 

  • Herber, R., Liem, A., Pitot, H.C., and Lambert, P.F. (1996) Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70, 1873–1881.

    PubMed  CAS  Google Scholar 

  • Hickman, E.S., Picksley, S.M., and Vousden, K.H. (1994) Cells expressing HPV16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene 9, 2177–2181.

    PubMed  CAS  Google Scholar 

  • Horner, S.M., DeFilippis, R.A., Manuelidis, L., and DiMaio, D. (2004) Repression of the human papillomavirus E6 gene initiates p53-dependent, telomerase-independent senescence and apoptosis in HeLa cervical carcinoma cells. J. Virol. 78, 4063–4073.

    PubMed  CAS  Google Scholar 

  • Horwitz, B.H., Burkhardt, A.L., Schlegel, R., and DiMaio, D. (1988) 44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids. Mol. Cell. Biol. 8, 4071–4078.

    PubMed  CAS  Google Scholar 

  • Hudson, J.B., Bedell, M.A., McCance, D.J., and Laimins, L.A. (1990) Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J. Virol. 64, 519–526.

    PubMed  CAS  Google Scholar 

  • Huh, K.W., DeMasi, J., Ogawa, H., Nakatani, Y., Howley, P.M., and Munger, K. (2005) Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl. Acad. Sci. USA 102, 11492–11497.

    PubMed  CAS  Google Scholar 

  • Hwang, E.-S., Nottoli, T., and DiMaio, D. (1995) The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211, 227–233.

    PubMed  CAS  Google Scholar 

  • Hwang, E.-S., Riese II, D.J., Settleman, J., Nilson, L.A., Honig, J., Flynn, S., and DiMaio, D. (1993) Inhibition of cervical carcinoma cell line proliferation by introduction of a bovine papillomavirus regulatory gene. J. Virol. 67, 3720–3729.

    PubMed  CAS  Google Scholar 

  • Jeon, S., Allen, H.B., and Lambert, P.F. (1995) Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69, 2989–2997.

    PubMed  CAS  Google Scholar 

  • Jewers, R.J., Hildebrandt, P., Ludlow, J.W., Kell, B., and McCance, D.J. (1992) Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J. Virol. 66, 1329–1335.

    PubMed  CAS  Google Scholar 

  • Johung, K., Goodwin, E.C., and DiMaio, D. (2007) Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J. Virol. 81, 2102–2116.

    PubMed  CAS  Google Scholar 

  • Jones, D.L., Alani, R.M., and Munger, K. (1997a) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11, 2101–2111.

    Google Scholar 

  • Jones, D.L., Thompson, D.A., and Munger, K. (1997b) Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239, 97–107.

    Google Scholar 

  • Kaur, P. and McDougall, J.K. (1989) HPV-18 immortalization of human keratinocytes. Virology 173, 302–310.

    PubMed  CAS  Google Scholar 

  • Kaur, P., McDougall, J.K., and Cone, R. (1989) Immortalization of primary human epithelial cells by cloned cervical carcinoma DNA containing human papillomavirus type 16 E6/E7 open reading frames. J. Gen. Virol. 70, 1261–1266.

    PubMed  CAS  Google Scholar 

  • Kessis, T.D., Slebos, R.J.C., Nelson, W.G., Kastan, M.B., Plunkett, B.S., Han, S.M., Lorincz, A.T., Hedrick, L., and Cho, K.R. (1993) Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 90, 3988–3992.

    PubMed  CAS  Google Scholar 

  • Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Kleingelhutz, A.J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88.

    PubMed  CAS  Google Scholar 

  • Kiyono, T., Hiraiwa, A., Fujita, M., Hayashi, Y., Akiyama, T., and Ishibashi, M. (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94, 1s1612–11616.

    Google Scholar 

  • Klein, O., Kegler-Ebo, D., Su, J., Smith, S.O., and DiMaio, D. (1999) The bovine papillomavirus E5 protein requires a juxtamembrane negative charge for activation of the platelet-derived growth factor β receptor and transformation of C127 cells. J. Virol. 73, 3264–3272.

    PubMed  CAS  Google Scholar 

  • Klein, O., Polack, G.W., Surti, T., Kegler-Ebo, D., Smith, S.O., and DiMaio, D. (1998) Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation. J. Virol. 72, 8921–8932.

    PubMed  CAS  Google Scholar 

  • Klingelhutz, A.J., Foster, S.A., and McDougall, J.K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82.

    PubMed  CAS  Google Scholar 

  • Lai, C.-C., Edwards, A.P.B., and DiMaio, D. (2005) Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor β receptor. J. Virol. 79, 1924–1929.

    PubMed  CAS  Google Scholar 

  • Lai, C.-C., Henningson, C., and DiMaio, D. (1998) Bovine papillomavirus E5 protein induces oligomerization and trans-phosphorylation of the platelet-derived growth factor β receptor. Proc. Natl. Acad. Sci. USA 95, 15241–15246.

    PubMed  CAS  Google Scholar 

  • Lambert, P.F., Pan, H., Pitot, H., Liem, A., Jackson, M., and Griep, A. (1993) Epidermal cancer associated with expression of human papillomavirus type 16 E6 and E7 oncogenes in the skin of transgenic mice. Proc. Natl. Acad. Sci. USA 90, 5583–5587.

    PubMed  CAS  Google Scholar 

  • Lee, C.J., Suh, E.J., Kang, H.T., Im, J.S., Um, S.J., Park, J.S., and Hwang, E.-S. (2002a) Induction of senescence-like state and suppression of telomerase activity through inhibition of HPV E6/E7 gene expression in cells immortalized by HPV16 DNA. Exp. Cell Res. 277, 173–182.

    Google Scholar 

  • Lee, D., Lim, C., Seo, T., Kwon, H., Min, H., and Choe, J. (2002b) The viral oncogene human papillomavirus E7 deregulates transcriptional silencing by Brm-related gene 1 via molecular interactions. J. Biol. Chem. 277, 48842–48848.

    Google Scholar 

  • Lee, S.S., Glaunsinger, B., Mantovani, F., Banks, L., and Javier, R.T. (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J. Virol. 74, 9680–9693.

    PubMed  CAS  Google Scholar 

  • Lee, S.S., Weiss, R.S., and Javier, R.T. (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94, 6670–6675.

    PubMed  CAS  Google Scholar 

  • Leechanachai, P., Banks, L., Moreau, F., and Matlashewski, G. (1992) The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7, 19–25.

    PubMed  CAS  Google Scholar 

  • Leptak, C., Ramon y Cajal, S., Kulke, R., Horwitz, B.H., Riese II, D.J., Dotto, G.P., and DiMaio, D. (1991) Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J. Virol. 65, 7078–7083.

    PubMed  CAS  Google Scholar 

  • Liu, X., Yuan, H., Fu, B., Disbrow, G.L., Apolinario, T., Tomaic, V., Kelley, M.L., Baker, C.C., Huibregtse, J., and Schlegel, R. (2005) The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J. Biol. Chem. 280, 10807–10816.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Chen, J.J., Gao, Q., Dalal, S., Hong, Y., Mansur, C.P., Band, V., and Androphy, E.J. (1999) Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J. Virol. 73, 7297–7307.

    PubMed  CAS  Google Scholar 

  • Liu, Z., Ghai, J., Ostrow, R.S., McGlennen, R.C., and Faras, A.J. (1994) The E6 gene of human papillomavirus type 16 is sufficient for transformation of baby rat kidney cells in cotransfection with activated Ha-ras. Virology 201, 388–396.

    PubMed  CAS  Google Scholar 

  • Longworth, M.S. and Laimins, L.A. (2004) The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J. Virol. 78, 3533–3541.

    PubMed  CAS  Google Scholar 

  • Mantovani, F. and Banks, L. (2001) The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20, 7874–7887.

    PubMed  CAS  Google Scholar 

  • Matlashewski, G., Schneider, J., Banks, L., Jones, N., Murray, A., and Crawford, L. (1987) Human papillomavirus type 16 cooperates with activated ras in transforming primary cells. EMBO J. 6, 1741–1746.

    PubMed  CAS  Google Scholar 

  • Mattoon, D., Gupta, K., Doyon, J., Loll, P.J., and DiMaio, D. (2001) Identification of the transmembrane dimer interface of the bovine papillomavirus E5 protein. Oncogene 20, 3824–3834.

    PubMed  CAS  Google Scholar 

  • May, M., Dong, X.P., Beyer-Finkler, E., Stubenrauch, F., Fuchs, P.G., and Pfister, H. (1994) The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. EMBO J. 13, 1460–1466.

    PubMed  CAS  Google Scholar 

  • McCance, D.J., Kopan, R., Fuchs, E., and Laimins, L.A. (1988) Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc. Natl. Acad. Sci. USA 85, 7169–7173.

    PubMed  CAS  Google Scholar 

  • Meyer, A.N., Xu, Y.-F., Webster, M.K., Smith, A.S., and Donoghue, D.J. (1994) Cellular transformation by a transmembrane peptide: structural requirements for the bovine papillomavirus E5 oncoprotein. Proc. Natl. Acad. Sci. USA 91, 4634–4638.

    PubMed  CAS  Google Scholar 

  • Munger, K., Basile, J.R., Duensing, S., Eichten, A., Gonzalez, S.L., Grace, M., and Zacny, V.L. (2001) Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20, 7888–7898.

    PubMed  CAS  Google Scholar 

  • Munger, K., Phelps, W.C., Bubb, V., Howley, P.M., and Schlegel, R. (1989a) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63, 4417–4421.

    Google Scholar 

  • Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley, P.M. (1989b) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105.

    Google Scholar 

  • Naeger, L.K., Goodwin, E.C., Hwang, E.-S., DeFilippis, R.A., Zhang, H., and DiMaio, D. (1999) Bovine papillomavirus E2 protein activates a complex growth-inhibitory program in p53-negative HT-3 cervical carcinoma cells that includes repression of cyclin A and cdc25A phosphatase genes and accumulation of hypophosphorylated retinoblastoma protein. Cell Growth Differ. 10, 413–422.

    PubMed  CAS  Google Scholar 

  • Nakagawa, S. and Huibregtse, J.M. (2000) Human scribble (vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol. Cell. Biol. 20, 8244–8253.

    PubMed  CAS  Google Scholar 

  • Nappi, V.M. and Petti, L.M. (2002) Multiple transmembrane amino acid requirements suggest a highly specific interaction between the bovine papillomavirus E5 oncoprotein and the platelet-derived growth factor beta receptor. J. Virol. 76, 7976–7986.

    PubMed  CAS  Google Scholar 

  • Nguyen, M.L., Nguyen, M.M., Lee, D., Griep, A.E., and Lambert, P.F. (2003) The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6 s induction of epithelial hyperplasia in vivo. J. Virol. 77, 6957–6964.

    PubMed  CAS  Google Scholar 

  • Nilson, L.A. and DiMaio, D. (1993) Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein. Mol. Cell. Biol. 13, 4137–45.

    PubMed  CAS  Google Scholar 

  • Nilson, L.A., Gottlieb, R.L., Polack, G.W., and DiMaio, D. (1995) Mutational analysis of the interaction between the bovine papillomavirus E5 transforming protein and the endogenous beta receptor for platelet-derived growth factor in mouse C127 cells. J. Virol. 69, 5869–5874.

    PubMed  CAS  Google Scholar 

  • Oh, S.T., Kyo, S., and Laimins, L.A. (2001) Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol. 75, 5559–5566.

    PubMed  CAS  Google Scholar 

  • Orth, G., Jablonska, S., Jarzabek-Chorzelska, M., Obalek, S., Rzesa, G., Favre, M., and Croissant, O. (1979) Characteristics of the lesions and risk of malignant conversion associated with the type of human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res. 39, 1074–1082.

    PubMed  CAS  Google Scholar 

  • Pan, H. and Griep, A.E. (1995) Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 9, 2157–2169.

    PubMed  CAS  Google Scholar 

  • Patel, D., Huang, S.M., Baglia, L.A., and McCance, D.J. (1999) The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18, 5061–5072.

    PubMed  CAS  Google Scholar 

  • Pecoraro, G., Lee, M., Morgan, D., and Defendi, V. (1991) Evolution of in vitro transformation and tumorigenesis of HPV16 and HPV18 immortalized primary cervical epithelial cells. Am. J. Pathol. 138, 1–8.

    Google Scholar 

  • Pei, X.F., Sherman, L., Sun, Y.H., and Schlegel, R. (1998) HPV-16 E7 protein bypasses keratinocyte growth inhibition by serum and calcium. Carcinogenesis 19, 1481–1486.

    PubMed  CAS  Google Scholar 

  • Petti, L. and DiMaio, D. (1992) Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells. Proc. Natl. Acad. Sci USA 89, 6736–6740.

    PubMed  CAS  Google Scholar 

  • Petti, L., Nilson, L.A., and DiMaio, D. (1991) Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 10, 845–855.

    PubMed  CAS  Google Scholar 

  • Petti, L.M., Reddy, V., Smith, S.O., and DiMaio, D. (1997) Identification of amino acids in the transmembrane and juxtamembrane domains of the platelet-derived growth factor receptor required for productive interaction with the bovine papillomavirus E5 protein. J. Virol. 71, 7318–7327.

    PubMed  CAS  Google Scholar 

  • Phelps, W.C., Munger, K., Yee, C.L., Barnes, J.A., and Howley, P.M. (1992) Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J. Virol. 66, 2418–2427.

    PubMed  CAS  Google Scholar 

  • Phelps, W.C., Yee, C.L., Munger, K., and Howley, P.M. (1988) The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to adenovirus E1a. Cell 53, 539–547.

    PubMed  CAS  Google Scholar 

  • Pim, D., Collins, M., and Banks, L. (1992) Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7, 27–32.

    PubMed  CAS  Google Scholar 

  • Pim, D., Storey, A., Thomas, M., Massimi, P., and Banks, L. (1994) Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalization of primary BMK cells. Oncogene 9, 1869–1876.

    PubMed  CAS  Google Scholar 

  • Pirisi, L., Creek, K.E., Doniger, J., and DiPaolo, J.A. (1988) Continuous cell lines with altered growth and differentiation properties originate after transfection of human keratinocytes with human papillomavirus type 16 DNA. Carcinogenesis 9, 1573–1579.

    PubMed  CAS  Google Scholar 

  • Pirisi, L., Yasumoto, S., Feller, M., Doniger, J., and DiPaolo, J.A. (1987) Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J. Virol. 61, 1061–1066.

    PubMed  CAS  Google Scholar 

  • Psyrri, A., DeFilippis, R.A., Edwards, A.P.B., Yates, K.E., Manuelidis, L., and DiMaio, D. (2004) Role of the retinoblastoma pathway in senescence triggered by repression of the human papillomavirus E7 protein in cervical carcinoma cells. Cancer Res. 64, 3079–3086.

    PubMed  CAS  Google Scholar 

  • Rey, O., Lee, S., and Park, N.H. (1999) Impaired nucleotide excision repair in UV-irradiated human oral keratinocytes immortalized with type 16 human papillomavirus genome. Oncogene 18, 6997–7001.

    PubMed  CAS  Google Scholar 

  • Reznikoff, C.A., Belair, C., Savelieva, E., Zhai, Y., Pfeifer, K., Yeager, T., Thompson, K.J., DeVries, S., Bindley, C., and Newton, M.A. (1994) Long-term genome stability and minimal genotypic and phenotypic alterations in HPV-16 E7-, but not E6-immortalized human uroepithelial cells. Genes Dev. 8, 2227–2240.

    PubMed  CAS  Google Scholar 

  • Rous, P. and Beard, J.W. (1935) The progression to carcinoma of virus-induced rabbit papillomas (Shope). J. Exp. Med. 62, 523–U96.

    PubMed  CAS  Google Scholar 

  • Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F., Schlegel, R., and Grinstein, S. (2000) Golgi alkalinization by the papillomavirus E5 oncoprotein. J. Cell Biol. 148. 305–315.

    PubMed  CAS  Google Scholar 

  • Scheffner, M., Huibregtse, J.M., Vierstra, R.D., and Howley, P.M. (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505.

    PubMed  CAS  Google Scholar 

  • Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., and Howley, P.M. (1990) The E6 oncoprotein encoded by human papillomavirus type 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136.

    PubMed  CAS  Google Scholar 

  • Schiller, J.T., Vass, W.C., and Lowy, D.R. (1984) Identification of a second transforming region in bovine papillomavirus DNA. Proc. Natl. Acad. Sci. USA 81, 7880–7884.

    PubMed  CAS  Google Scholar 

  • Schlegel, R., Wade-Glass, M., Rabson, M.S., and Yang, Y.-C. (1986) The E5 transforming gene of bovine papillomavirus encodes a small hydrophobic protein. Science 233, 464–467.

    PubMed  CAS  Google Scholar 

  • Schneider-Maunoury, S., Croissant, O., and Orth, G. (1987) Integration of human papillomavirus type 16 DNA sequences: a possible early event in the progression of genital tumors. J. Virol. 61, 3295–3298.

    PubMed  CAS  Google Scholar 

  • Schwarz, E., Freese, U.K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., and zur Hausen, H. (1985) Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111–114.

    PubMed  CAS  Google Scholar 

  • Sherman, L., Itzhaki, H., Jackman, A., Chen, J.J., Koval, D., and Schlegel, R. (2002) Inhibition of serum- and calcium-induced terminal differentiation of human keratinocytes by HPV 16 E6: study of the association with p53 degradation, inhibition of p53 transactivation, and binding to E6BP. Virology 292, 309–320.

    PubMed  CAS  Google Scholar 

  • Slebos, R.J.C., Lee, M.H., Plunkett, B.S., Kessis, T.D., Williams, B.O., Jacks, T., Hedrick, L., Kastan, M.B., and Cho, K.R. (1994) p53-dependent G(1) arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl. Acad. Sci. USA 91, 5320–5324.

    PubMed  CAS  Google Scholar 

  • Song, S., Gulliver, G.A., and Lambert, P.F. (1998) Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. Proc. Natl. Acad. Sci. USA 95, 2290–2295.

    PubMed  CAS  Google Scholar 

  • Song, S., Pitot, H.C., and Lambert, P.F. (1999) The human papillomavirus type 16 E6 alone is sufficient to induce carcinomas in transgenic animals. J. Virol. 73, 5887–5893.

    PubMed  CAS  Google Scholar 

  • Southern, S.A., Lewis, M.H., and Herrington, C.S. (2004) Induction of tetrasomy by human papillomavirus type 16 E7 protein is independent of pRb binding and disruption of differentiation. Br. J. Cancer 90, 1949–1954.

    PubMed  CAS  Google Scholar 

  • Sparkowski, J., Mense, M., Anders, M., and Schlegel, R. (1996) E5 oncoprotein transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton protein binding and platelet-derived growth factor receptor binding and phosphorylation. J. Virol. 70, 2420–2430.

    PubMed  CAS  Google Scholar 

  • Staebler, A., Pierce, J.H., Brazinski, S., Heidaran, M.A., Li, W., Schlegel, R., and Goldstein, D.J. (1995) Mutational analysis of the beta-type platelet-derived growth factor receptor defines the site of interaction with the bovine papillomavirus type 1 E5 transforming protein. J. Virol. 69, 6507–6517.

    PubMed  CAS  Google Scholar 

  • Stevaux, O. and Dyson, N.J. (2002) A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 14, 684–691.

    PubMed  CAS  Google Scholar 

  • Storey, A. and Banks, L. (1993) Human papillomavirus type 16 E6 gene cooperates with EJ-ras to immortalize primary mouse cells. Oncogene 8, 919–924.

    PubMed  CAS  Google Scholar 

  • Straight, S.W., Herman, B., and McCance, D.J. (1995) The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192.

    PubMed  CAS  Google Scholar 

  • Straight, S.W., Hinkle, P.M., Jewers, R.J., and McCance, D.J. (1993) The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J. Virol. 67, 4521–4532.

    PubMed  CAS  Google Scholar 

  • Suprynowicz, F.A., Baege, A., Sunitha, I., and Schlegel, R. (2002) c-Src activation by the E5 oncoprotein enables transformation independently of PDGF receptor activation. Oncogene 21, 1695–1706.

    PubMed  CAS  Google Scholar 

  • Suprynowicz, F.A., Sparkowski, J., Baege, A., and Schlegel, R. (2000) E5 oncoprotein mutants activate phosphoinositide 3′ -kinase independently of platelet-derived growth factor receptor activation. J. Biol. Chem. 275, 5111–5119.

    PubMed  CAS  Google Scholar 

  • Surti, T., Klein, O., Aschheim, K., DiMaio, D., and Smith, S.O. (1998) Structural models of the bovine papillomavirus E5 protein. Proteins 33, 601–612.

    PubMed  CAS  Google Scholar 

  • Thierry, F. and Yaniv, M. (1987) The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 6, 3391–3397.

    PubMed  CAS  Google Scholar 

  • Thomas, J.T., Hubert, W.G., Ruesch, M.N., and Laimins, L.A. (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc. Natl. Acad. Sci. USA 96, 8449–8454.

    PubMed  CAS  Google Scholar 

  • Thomas, J.T. and Laimins, L.A. (1998) Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J. Virol. 72, 1131–1137.

    PubMed  CAS  Google Scholar 

  • Thompson, D.A. and Belinsky, G. (1997) The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15, 3025–3036.

    PubMed  CAS  Google Scholar 

  • Thomsen, P., van Deurs, B., Norrild, B., and Kayser, L. (2000) The HPV16 E5 oncogene inhibits endocytic trafficking. Oncogene 19, 6023–6032.

    PubMed  CAS  Google Scholar 

  • Tomakidi, P., Cheng, H., Kohl, A., Komposch, G., and Alonso, A. (2000) Modulation of the epidermal growth factor receptor by the human papillomavirus type 16 E5 protein in raft cultures of human keratinocytes. Eur. J. Cell Biol. 79, 407–412.

    PubMed  CAS  Google Scholar 

  • Tommasino, M., Adamczewski, J.P., Carlotti, F., Barth, C.F., Manetti, R., Contorni, M., Cavalieri, F., Hunt, T., and Crawford, L. (1993) HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 8, 195–202.

    PubMed  CAS  Google Scholar 

  • Tong, X. and Howley, P.M. (1997) The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 94, 4412–4417.

    PubMed  CAS  Google Scholar 

  • Tsunokawa, Y., Takebe, N., Kasamatsu, T., Terada, M., and Sugimura, T. (1986) Transforming activity of human papillomavirus type 16 DNA sequence in a cervical cancer. Proc. Natl. Acad. Sci. USA 83, 2200–2203.

    PubMed  CAS  Google Scholar 

  • Veldman, T., Horikawa, I., Barrett, J.C., and Schlegel, R. (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol. 75, 4467–4472.

    PubMed  CAS  Google Scholar 

  • Veldman, T., Liu, X., Yuan, H., and Schlegel, R. (2003) Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc. Natl. Acad. Sci. USA 100, 8211–8216.

    PubMed  CAS  Google Scholar 

  • von Knebel Doeberitz, M., Oltersdorf, T., Schwarz, E., and Gissmann, L. (1988) Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res. 48, 3780–3786.

    Google Scholar 

  • Vousden, K.H., Doninger, J., DiPaolo, J.A., and Lowy, D.R. (1988) The E7 open reading frame of human papillomavirus type 16 encodes a transforming gene. Oncogene Res. 3, 167–175.

    PubMed  CAS  Google Scholar 

  • Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., and Munoz, N. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Pathology 189, 12–19.

    CAS  Google Scholar 

  • Wells, S.I., Francis, D.A., Karpova, A.Y., Dowhanick, J.J., Benson, J.D., and Howley, P.M. (2000) Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21CIP-dependent pathways. EMBO J. 19, 5762–5771.

    PubMed  CAS  Google Scholar 

  • Werness, B.A., Levine, A.J., and Howley, P.M. (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79.

    PubMed  CAS  Google Scholar 

  • White, A.E., Livanos, E.M., and Tlsty, T.D. (1994) Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666–677.

    PubMed  CAS  Google Scholar 

  • Yasumoto, S., Burkhardt, A.L., Doninger, J., and DiPaolo, J. (1986) Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J. Virol. 57, 572–577.

    PubMed  CAS  Google Scholar 

  • Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J.W., and Jansen-Durr, P. (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13, 2323–2330.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Chen, W., and Roman, A. (2006) The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc. Natl. Acad. Sci. USA 103, 437–442.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Srirangam, A., Potter, D.A., and Roman, A. (2005) HPV16 E5 protein disrupts the c-Cbl-EGFR interaction and EGFR ubiquitination in human foreskin keratinocytes. Oncogene 24, 2585–2588.

    PubMed  CAS  Google Scholar 

  • Zheng, Z.M. and Baker, C.C. (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front. Biosci. 11, 2286–2302.

    PubMed  CAS  Google Scholar 

  • Zimmermann, H., Degenkolbe, R., Bernard, H.U., and O Connor, M.J. (1999) The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73, 6209–6219.

    PubMed  CAS  Google Scholar 

  • zur Hausen, H. (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2, 342–350.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work carried out in the authors’ laboratory is supported by grants from the NIH (CA16038 and CA37157). K.J. was supported by the MSTP training grant to Yale University. We thank J. Zulkeski for assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel DiMaio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Johung, K., DiMaio, D. (2009). Papillomavirus Transformation. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_5

Download citation

Publish with us

Policies and ethics