Skip to main content

The Life Cycle of Human Papillomaviruses

  • Chapter
  • First Online:
DNA Tumor Viruses
  • 1305 Accesses

Abstract

The life cycle of human papillomaviruses (HPV) is dependent on epithelial differentiation and is regulated by a number of cellular proteins. HPVs infect keratinocytes in the basal layer of the epithelium, and upon cell division, one daughter cell migrates to upper layers while undergoing differentiation. Differentiation triggers the productive phase of the viral life cycle, including viral DNA amplification, late gene expression and virion assembly. Through the actions of viral proteins, infected cells remain active in the cell cycle, creating an environment conducive to late viral events and the production of progeny virions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Androphy, E.J., Lowy, D.R. and Schiller, J.T. (1987) Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature, 325, 70–73.

    PubMed  CAS  Google Scholar 

  • Ashrafi, G.H., Haghshenas, M.R., Marchetti, B., O'Brien, P.M. and Campo, M.S. (2005) E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int J Cancer, 113, 276–283.

    PubMed  CAS  Google Scholar 

  • Baseman, J.G. and Koutsky, L.A. (2005) The epidemiology of human papillomavirus infections. J Clin Virol, 32 Suppl 1, S16–24.

    Google Scholar 

  • Baxter, M.K., McPhillips, M.G., Ozato, K. and McBride, A.A. (2005) The mitotic chromosome binding activity of the papillomavirus E2 protein correlates with interaction with the cellular chromosomal protein, Brd4. J Virol, 79, 4806–4818.

    PubMed  CAS  Google Scholar 

  • Bodily, J.M., Alam, S. and Meyers, C. (2006) Regulation of human papillomavirus type 31 late promoter activation and genome amplification by protein kinase C. Virology, 348, 328–340.

    PubMed  CAS  Google Scholar 

  • Bosch, F.X., Lorincz, A., Munoz, N., Meijer, C.J. and Shah, K.V. (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol, 55, 244–265.

    PubMed  CAS  Google Scholar 

  • Bousarghin, L., Touze, A., Sizaret, P.Y. and Coursaget, P. (2003) Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol, 77, 3846–3850.

    PubMed  CAS  Google Scholar 

  • Bouvard, V., Matlashewski, G., Gu, Z.M., Storey, A. and Banks, L. (1994) The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology, 203, 73–80.

    PubMed  CAS  Google Scholar 

  • Brehm, A., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J. and Kouzarides, T. (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 391, 597–601.

    PubMed  CAS  Google Scholar 

  • Brehm, A., Nielsen, S.J., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J. and Kouzarides, T. (1999) The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. Embo J, 18, 2449–2458.

    PubMed  CAS  Google Scholar 

  • Brimer, N., Lyons, C. and Vande Pol, S.B. (2007) Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. Virology, 358, 303–310.

    PubMed  CAS  Google Scholar 

  • Buck, C.B., Thompson, C.D., Pang, Y.Y., Lowy, D.R. and Schiller, J.T. (2005) Maturation of papillomavirus capsids. J Virol, 79, 2839–2846.

    PubMed  CAS  Google Scholar 

  • Butz, K. and Hoppe-Seyler, F. (1993) Transcriptional control of human papillomavirus (HPV) oncogene expression: composition of the HPV type 18 upstream regulatory region. J Virol, 67, 6476–6486.

    PubMed  CAS  Google Scholar 

  • Chellappan, S., Kraus, V.B., Kroger, B., Munger, K., Howley, P.M., Phelps, W.C. and Nevins, J.R. (1992) Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA, 89, 4549–4553.

    PubMed  CAS  Google Scholar 

  • Chen, X.S., Garcea, R.L., Goldberg, I., Casini, G. and Harrison, S.C. (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell, 5, 557–567.

    PubMed  CAS  Google Scholar 

  • Cheng, S., Schmidt-Grimminger, D.C., Murant, T., Broker, T.R. and Chow, L.T. (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev, 9, 2335–2349.

    PubMed  CAS  Google Scholar 

  • Chong, T., Apt, D., Gloss, B., Isa, M. and Bernard, H.U. (1991) The enhancer of human papillomavirus type 16: binding sites for the ubiquitous transcription factors oct-1, NFA, TEF-2, NF1, and AP-1 participate in epithelial cell-specific transcription. J Virol, 65, 5933–5943.

    PubMed  CAS  Google Scholar 

  • Clifford, G., Franceschi, S., Diaz, M., Munoz, N. and Villa, L.L. (2006) Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine, 24 Suppl 3, S26–34.

    Google Scholar 

  • Clower, R.V., Fisk, J.C. and Melendy, T. (2006) Papillomavirus E1 protein binds to and stimulates human topoisomerase I. J Virol, 80, 1584–1587.

    PubMed  CAS  Google Scholar 

  • Combita, A.L., Touze, A., Bousarghin, L., Sizaret, P.Y., Munoz, N. and Coursaget, P. (2001) Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett, 204, 183–188.

    PubMed  CAS  Google Scholar 

  • Conrad, M., Bubb, V.J. and Schlegel, R. (1993) The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol, 67, 6170–6178.

    PubMed  CAS  Google Scholar 

  • Cripe, T.P., Haugen, T.H., Turk, J.P., Tabatabai, F., Schmid, P.G., 3rd, Durst, M., Gissmann, L., Roman, A. and Turek, L.P. (1987) Transcriptional regulation of the human papillomavirus-16 E6-E7 promoter by a keratinocyte-dependent enhancer, and by viral E2 trans-activator and repressor gene products: implications for cervical carcinogenesis. Embo J, 6, 3745–3753.

    PubMed  CAS  Google Scholar 

  • Crook, T., Tidy, J.A. and Vousden, K.H. (1991) Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell, 67, 547–556.

    PubMed  CAS  Google Scholar 

  • Cumming, S.A., Repellin, C.E., McPhillips, M., Radford, J.C., Clements, J.B. and Graham, S.V. (2002) The human papillomavirus type 31 late 3′ untranslated region contains a complex bipartite negative regulatory element. J Virol, 76, 5993–6003.

    PubMed  CAS  Google Scholar 

  • Davy, C.E., Ayub, M., Jackson, D.J., Das, P., McIntosh, P. and Doorbar, J. (2006) HPV16 E1–E4 protein is phosphorylated by Cdk2/cyclin A and relocalizes this complex to the cytoplasm. Virology, 349, 230–244.

    PubMed  CAS  Google Scholar 

  • Davy, C.E., Jackson, D.J., Raj, K., Peh, W.L., Southern, S.A., Das, P., Sorathia, R., Laskey, P., Middleton, K., Nakahara, T., Wang, Q., Masterson, P.J., Lambert, P.F., Cuthill, S., Millar, J.B. and Doorbar, J. (2005) Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol, 79, 3998–4011.

    PubMed  CAS  Google Scholar 

  • Davy, C.E., Jackson, D.J., Wang, Q., Raj, K., Masterson, P.J., Fenner, N.F., Southern, S., Cuthill, S., Millar, J.B. and Doorbar, J. (2002) Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J Virol, 76, 9806–9818.

    PubMed  CAS  Google Scholar 

  • Day, P.M., Baker, C.C., Lowy, D.R. and Schiller, J.T. (2004) Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci USA, 101, 14252–14257.

    PubMed  CAS  Google Scholar 

  • Day, P.M., Lowy, D.R. and Schiller, J.T. (2003) Papillomaviruses infect cells via a clathrin-dependent pathway. Virology, 307, 1–11.

    PubMed  CAS  Google Scholar 

  • Day, P.M., Roden, R.B., Lowy, D.R. and Schiller, J.T. (1998) The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol, 72, 142–150.

    PubMed  CAS  Google Scholar 

  • de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U. and zur Hausen, H. (2004) Classification of papillomaviruses. Virology, 324, 17–27.

    PubMed  Google Scholar 

  • del Mar Pena, L.M. and Laimins, L.A. (2001) Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J Virol, 75, 10005–10013.

    PubMed  Google Scholar 

  • Del Vecchio, A.M., Romanczuk, H., Howley, P.M. and Baker, C.C. (1992) Transient replication of human papillomavirus DNAs. J Virol, 66, 5949–5958.

    PubMed  Google Scholar 

  • Demeret, C., Desaintes, C., Yaniv, M. and Thierry, F. (1997) Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes. J Virol, 71, 9343–9349.

    PubMed  CAS  Google Scholar 

  • Demeret, C., Yaniv, M. and Thierry, F. (1994) The E2 transcriptional repressor can compensate for Sp1 activation of the human papillomavirus type 18 early promoter. J Virol, 68, 7075–7082.

    PubMed  CAS  Google Scholar 

  • Demers, G.W., Halbert, C.L. and Galloway, D.A. (1994) Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology, 198, 169–174.

    PubMed  CAS  Google Scholar 

  • DiMaio, D. (1991) Transforming activity of bovine and human papillomaviruses in cultured cells. Adv Cancer Res, 56, 133–159.

    PubMed  CAS  Google Scholar 

  • Disbrow, G.L., Hanover, J.A. and Schlegel, R. (2005) Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol, 79, 5839–5846.

    PubMed  CAS  Google Scholar 

  • Disbrow, G.L., Sunitha, I., Baker, C.C., Hanover, J. and Schlegel, R. (2003) Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology, 311, 105–114.

    PubMed  CAS  Google Scholar 

  • Dong, G., Broker, T.R. and Chow, L.T. (1994) Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements. J Virol, 68, 1115–1127.

    PubMed  CAS  Google Scholar 

  • Doorbar, J., Elston, R.C., Napthine, S., Raj, K., Medcalf, E., Jackson, D., Coleman, N., Griffin, H.M., Masterson, P., Stacey, S., Mengistu, Y. and Dunlop, J. (2000) The E1E4 protein of human papillomavirus type 16 associates with a putative RNA helicase through sequences in its C terminus. J Virol, 74, 10081–10095.

    PubMed  CAS  Google Scholar 

  • Doorbar, J., Ely, S., Sterling, J., McLean, C. and Crawford, L. (1991) Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature, 352, 824–827.

    PubMed  CAS  Google Scholar 

  • Doorbar, J., Foo, C., Coleman, N., Medcalf, L., Hartley, O., Prospero, T., Napthine, S., Sterling, J., Winter, G. and Griffin, H. (1997) Characterization of events during the late stages of HPV16 infection in vivo using high-affinity synthetic Fabs to E4. Virology, 238, 40–52.

    PubMed  CAS  Google Scholar 

  • Doorbar, J., Parton, A., Hartley, K., Banks, L., Crook, T., Stanley, M. and Crawford, L. (1990) Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line. Virology, 178, 254–262.

    PubMed  CAS  Google Scholar 

  • Dostatni, N., Thierry, F. and Yaniv, M. (1988) A dimer of BPV-1 E2 containing a protease resistant core interacts with its DNA target. Embo J, 7, 3807–3816.

    PubMed  CAS  Google Scholar 

  • Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes Dev, 12, 2245–2262.

    PubMed  CAS  Google Scholar 

  • Dyson, N., Howley, P.M., Munger, K. and Harlow, E. (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science, 243, 934–937.

    PubMed  CAS  Google Scholar 

  • Evander, M., Frazer, I.H., Payne, E., Qi, Y.M., Hengst, K. and McMillan, N.A. (1997) Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol, 71, 2449–2456.

    PubMed  CAS  Google Scholar 

  • Fanning, A.S. and Anderson, J.M. (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest, 103, 767–772.

    PubMed  CAS  Google Scholar 

  • Fay, A., Yutzy, W.H.t., Roden, R.B. and Moroianu, J. (2004) The positively charged termini of L2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and DNA binding. J Virol, 78, 13447–13454.

    PubMed  CAS  Google Scholar 

  • Fehrmann, F., Klumpp, D.J. and Laimins, L.A. (2003) Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol, 77, 2819–2831.

    PubMed  CAS  Google Scholar 

  • Felsani, A., Mileo, A.M. and Paggi, M.G. (2006) Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene, 25, 5277–5285.

    PubMed  CAS  Google Scholar 

  • Finzer, P., Aguilar-Lemarroy, A. and Rosl, F. (2002) The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett, 188, 15–24.

    PubMed  CAS  Google Scholar 

  • Flores, E.R., Allen-Hoffmann, B.L., Lee, D. and Lambert, P.F. (2000) The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol, 74, 6622–6631.

    PubMed  CAS  Google Scholar 

  • Florin, L., Sapp, C., Streeck, R.E. and Sapp, M. (2002a) Assembly and translocation of papillomavirus capsid proteins. J Virol, 76, 10009–10014.

    Google Scholar 

  • Florin, L., Schafer, F., Sotlar, K., Streeck, R.E. and Sapp, M. (2002b) Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology, 295, 97–107.

    Google Scholar 

  • Frattini, M.G. and Laimins, L.A. (1994a) Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. Proc Natl Acad Sci USA, 91, 12398–12402.

    Google Scholar 

  • Frattini, M.G. and Laimins, L.A. (1994b) The role of the E1 and E2 proteins in the replication of human papillomavirus type 31b. Virology, 204, 799–804.

    Google Scholar 

  • Funk, J.O., Waga, S., Harry, J.B., Espling, E., Stillman, B. and Galloway, D.A. (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev, 11, 2090–2100.

    PubMed  CAS  Google Scholar 

  • Furth, P.A. and Baker, C.C. (1991) An element in the bovine papillomavirus late 3′ untranslated region reduces polyadenylated cytoplasmic RNA levels. J Virol, 65, 5806–5812.

    PubMed  CAS  Google Scholar 

  • Gage, J.R., Meyers, C. and Wettstein, F.O. (1990) The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J Virol, 64, 723–730.

    PubMed  CAS  Google Scholar 

  • Garner-Hamrick, P.A., Fostel, J.M., Chien, W.M., Banerjee, N.S., Chow, L.T., Broker, T.R. and Fisher, C. (2004) Global effects of human papillomavirus type 18 E6/E7 in an organotypic keratinocyte culture system. J Virol, 78, 9041–9050.

    PubMed  CAS  Google Scholar 

  • Garnett, T.O. and Duerksen-Hughes, P.J. (2006) Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol, 151, 2321–2335.

    PubMed  CAS  Google Scholar 

  • Genther, S.M., Sterling, S., Duensing, S., Munger, K., Sattler, C. and Lambert, P.F. (2003) Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol, 77, 2832–2842.

    PubMed  CAS  Google Scholar 

  • Giri, I. and Yaniv, M. (1988) Structural and mutational analysis of E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. Embo J, 7, 2823–2829.

    PubMed  CAS  Google Scholar 

  • Giroglou, T., Florin, L., Schafer, F., Streeck, R.E. and Sapp, M. (2001) Human papillomavirus infection requires cell surface heparan sulfate. J Virol, 75, 1565–1570.

    PubMed  CAS  Google Scholar 

  • Glaunsinger, B.A., Lee, S.S., Thomas, M., Banks, L. and Javier, R. (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene, 19, 5270–5280.

    PubMed  CAS  Google Scholar 

  • Gloss, B. and Bernard, H.U. (1990) The E6/E7 promoter of human papillomavirus type 16 is activated in the absence of E2 proteins by a sequence-aberrant Sp1 distal element. J Virol, 64, 5577–5584.

    PubMed  CAS  Google Scholar 

  • Gloss, B., Bernard, H.U., Seedorf, K. and Klock, G. (1987) The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. Embo J, 6, 3735–3743.

    PubMed  CAS  Google Scholar 

  • Grassmann, K., Rapp, B., Maschek, H., Petry, K.U. and Iftner, T. (1996) Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol, 70, 2339–2349.

    PubMed  CAS  Google Scholar 

  • Handa, K., Yugawa, T., Narisawa-Saito, M., Ohno, S., Fujita, M. and Kiyono, T. (2007) E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein. J Virol, 81, 1379–1389.

    PubMed  CAS  Google Scholar 

  • Harper, D.M., Franco, E.L., Wheeler, C., Ferris, D.G., Jenkins, D., Schuind, A., Zahaf, T., Innis, B., Naud, P., De Carvalho, N.S., Roteli-Martins, C.M., Teixeira, J., Blatter, M.M., Korn, A.P., Quint, W. and Dubin, G. (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet, 364, 1757–1765.

    PubMed  CAS  Google Scholar 

  • Harper, D.M., Franco, E.L., Wheeler, C.M., Moscicki, A.B., Romanowski, B., Roteli-Martins, C.M., Jenkins, D., Schuind, A., Costa Clemens, S.A. and Dubin, G. (2006) Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet, 367, 1247–1255.

    PubMed  CAS  Google Scholar 

  • Harris, B.Z. and Lim, W.A. (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci, 114, 3219–3231.

    PubMed  CAS  Google Scholar 

  • Hawley-Nelson, P., Androphy, E.J., Lowy, D.R. and Schiller, J.T. (1988) The specific DNA recognition sequence of the bovine papillomavirus E2 protein is an E2-dependent enhancer. Embo J, 7, 525–531.

    PubMed  CAS  Google Scholar 

  • He, W., Staples, D., Smith, C. and Fisher, C. (2003) Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J Virol, 77, 10566–10574.

    PubMed  CAS  Google Scholar 

  • Hebner, C.M. and Laimins, L.A. (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol, 16, 83–97.

    PubMed  CAS  Google Scholar 

  • Ho, G.Y., Bierman, R., Beardsley, L., Chang, C.J. and Burk, R.D. (1998) Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med, 338, 423–428.

    PubMed  CAS  Google Scholar 

  • Holmgren, S.C., Patterson, N.A., Ozbun, M.A. and Lambert, P.F. (2005) The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J Virol, 79, 3938–3948.

    PubMed  CAS  Google Scholar 

  • Holowaty, P., Miller, A.B., Rohan, T. and To, T. (1999) Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst, 91, 252–258.

    PubMed  CAS  Google Scholar 

  • Howley, P.M. (1996) Papillomavirinae: the viruses and their replication. In D.M Knipe, a.P.M.H. (ed.), Fields Virology. Lippincott-Raven Publishers, Philadelphia, pp. 947–978.

    Google Scholar 

  • Hubert, W.G., Kanaya, T. and Laimins, L.A. (1999) DNA replication of human papillomavirus type 31 is modulated by elements of the upstream regulatory region that lie 5' of the minimal origin. J Virol, 73, 1835–1845.

    PubMed  CAS  Google Scholar 

  • Hughes, F.J. and Romanos, M.A. (1993) E1 protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Res, 21, 5817–5823.

    PubMed  CAS  Google Scholar 

  • Huibregtse, J.M., Scheffner, M. and Howley, P.M. (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J, 10, 4129–4135.

    PubMed  CAS  Google Scholar 

  • Hummel, M., Hudson, J.B. and Laimins, L.A. (1992) Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol, 66, 6070–6080.

    PubMed  CAS  Google Scholar 

  • Hummel, M., Lim, H.B. and Laimins, L.A. (1995) Human papillomavirus type 31b late gene expression is regulated through protein kinase C-mediated changes in RNA processing. J Virol, 69, 3381–3388.

    PubMed  CAS  Google Scholar 

  • Ishiji, T., Lace, M.J., Parkkinen, S., Anderson, R.D., Haugen, T.H., Cripe, T.P., Xiao, J.H., Davidson, I., Chambon, P. and Turek, L.P. (1992) Transcriptional enhancer factor (TEF)-1 and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. Embo J, 11, 2271–2281.

    PubMed  CAS  Google Scholar 

  • Jones, D.L., Alani, R.M. and Munger, K. (1997) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev, 11, 2101–2111.

    PubMed  CAS  Google Scholar 

  • Jones, D.L. and Munger, K. (1997) Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol, 71, 2905–2912.

    PubMed  CAS  Google Scholar 

  • Joyce, J.G., Tung, J.S., Przysiecki, C.T., Cook, J.C., Lehman, E.D., Sands, J.A., Jansen, K.U. and Keller, P.M. (1999) The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem, 274, 5810–5822.

    PubMed  CAS  Google Scholar 

  • Kamper, N., Day, P.M., Nowak, T., Selinka, H.C., Florin, L., Bolscher, J., Hilbig, L., Schiller, J.T. and Sapp, M. (2006) A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol, 80, 759–768.

    PubMed  Google Scholar 

  • Kennedy, I.M., Haddow, J.K. and Clements, J.B. (1991) A negative regulatory element in the human papillomavirus type 16 genome acts at the level of late mRNA stability. J Virol, 65, 2093–2097.

    PubMed  CAS  Google Scholar 

  • Kirnbauer, R., Booy, F., Cheng, N., Lowy, D.R. and Schiller, J.T. (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA, 89, 12180–12184.

    PubMed  CAS  Google Scholar 

  • Klingelhutz, A.J., Foster, S.A. and McDougall, J.K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature, 380, 79–82.

    PubMed  CAS  Google Scholar 

  • Klumpp, D.J. and Laimins, L.A. (1999) Differentiation-induced changes in promoter usage for transcripts encoding the human papillomavirus type 31 replication protein E1. Virology, 257, 239–246.

    PubMed  CAS  Google Scholar 

  • Knight, G.L., Grainger, J.R., Gallimore, P.H. and Roberts, S. (2004) Cooperation between different forms of the human papillomavirus type 1 E4 protein to block cell cycle progression and cellular DNA synthesis. J Virol, 78, 13920–13933.

    PubMed  CAS  Google Scholar 

  • Koutsky, L. (1997) Epidemiology of genital human papillomavirus infection. Am J Med, 102, 3–8.

    PubMed  CAS  Google Scholar 

  • Kuhne, C., Gardiol, D., Guarnaccia, C., Amenitsch, H. and Banks, L. (2000) Differential regulation of human papillomavirus E6 by protein kinase A: conditional degradation of human discs large protein by oncogenic E6. Oncogene, 19, 5884–5891.

    PubMed  CAS  Google Scholar 

  • Kurman, R.J., Malkasian, G.D., Jr., Sedlis, A. and Solomon, D. (1991) From Papanicolaou to Bethesda: the rationale for a new cervical cytologic classification. Obstet Gynecol, 77, 779–782.

    PubMed  CAS  Google Scholar 

  • Kuttler, F. and Mai, S. (2007) Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Semin Cancer Biol, 17, 56–64.

    PubMed  CAS  Google Scholar 

  • Kyo, S., Klumpp, D.J., Inoue, M., Kanaya, T. and Laimins, L.A. (1997) Expression of AP1 during cellular differentiation determines human papillomavirus E6/E7 expression in stratified epithelial cells. J Gen Virol, 78 (Pt 2), 401–411.

    PubMed  CAS  Google Scholar 

  • Launay, S., Hermine, O., Fontenay, M., Kroemer, G., Solary, E. and Garrido, C. (2005) Vital functions for lethal caspases. Oncogene, 24, 5137–5148.

    PubMed  CAS  Google Scholar 

  • Lechner, M.S. and Laimins, L.A. (1994) Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol, 68, 4262–4273.

    PubMed  CAS  Google Scholar 

  • Lee, C. and Laimins, L.A. (2004) Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J Virol, 78, 12366–12377.

    PubMed  CAS  Google Scholar 

  • Lee, C., Wooldridge, T.R. and Laimins, L.A. (2007) Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle. Virology, 358, 201–210.

    PubMed  CAS  Google Scholar 

  • Lee, S.S., Glaunsinger, B., Mantovani, F., Banks, L. and Javier, R.T. (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol, 74, 9680–9693.

    PubMed  CAS  Google Scholar 

  • Leechanachai, P., Banks, L., Moreau, F. and Matlashewski, G. (1992) The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene, 7, 19–25.

    PubMed  CAS  Google Scholar 

  • Li, X. and Coffino, P. (1996) High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J Virol, 70, 4509–4516.

    PubMed  CAS  Google Scholar 

  • Longworth, M.S. and Laimins, L.A. (2004) The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol, 78, 3533–3541.

    PubMed  CAS  Google Scholar 

  • Longworth, M.S., Wilson, R. and Laimins, L.A. (2005) HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. Embo J, 24, 1821–1830.

    PubMed  CAS  Google Scholar 

  • Loo, Y.M. and Melendy, T. (2004) Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA. J Virol, 78, 1605–1615.

    PubMed  CAS  Google Scholar 

  • Masterson, P.J., Stanley, M.A., Lewis, A.P. and Romanos, M.A. (1998) A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. J Virol, 72, 7407–7419.

    PubMed  CAS  Google Scholar 

  • McBride, A.A., Byrne, J.C. and Howley, P.M. (1989) E2 polypeptides encoded by bovine papillomavirus type 1 form dimers through the common carboxyl-terminal domain: transactivation is mediated by the conserved amino-terminal domain. Proc Natl Acad Sci USA, 86, 510–514.

    PubMed  CAS  Google Scholar 

  • McIntyre, M.C., Ruesch, M.N. and Laimins, L.A. (1996) Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107. Virology, 215, 73–82.

    PubMed  CAS  Google Scholar 

  • McMillan, N.A., Payne, E., Frazer, I.H. and Evander, M. (1999) Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology, 261, 271–279.

    PubMed  CAS  Google Scholar 

  • Modis, Y., Trus, B.L. and Harrison, S.C. (2002) Atomic model of the papillomavirus capsid. Embo J, 21, 4754–4762.

    PubMed  CAS  Google Scholar 

  • Mohr, I.J., Clark, R., Sun, S., Androphy, E.J., MacPherson, P. and Botchan, M.R. (1990) Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science, 250, 1694–1699.

    PubMed  CAS  Google Scholar 

  • Muller, M., Gissmann, L., Cristiano, R.J., Sun, X.Y., Frazer, I.H., Jenson, A.B., Alonso, A., Zentgraf, H. and Zhou, J. (1995) Papillomavirus capsid binding and uptake by cells from different tissues and species. J Virol, 69, 948–954.

    PubMed  CAS  Google Scholar 

  • Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E. and Howley, P.M. (1989) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J, 8, 4099–4105.

    PubMed  CAS  Google Scholar 

  • Nakahara, T., Nishimura, A., Tanaka, M., Ueno, T., Ishimoto, A. and Sakai, H. (2002) Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol, 76, 10914–10920.

    PubMed  CAS  Google Scholar 

  • Nakahara, T., Peh, W.L., Doorbar, J., Lee, D. and Lambert, P.F. (2005) Human papillomavirus type 16 E1circumflexE4 contributes to multiple facets of the papillomavirus life cycle. J Virol, 79, 13150–13165.

    PubMed  CAS  Google Scholar 

  • Nasseri, M., Hirochika, R., Broker, T.R. and Chow, L.T. (1987) A human papilloma virus type 11 transcript encoding an E1–E4 protein. Virology, 159, 433–439.

    PubMed  CAS  Google Scholar 

  • Nevins, J.R. (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science, 258, 424–429.

    PubMed  CAS  Google Scholar 

  • Oberg, D., Collier, B., Zhao, X. and Schwartz, S. (2003) Mutational inactivation of two distinct negative RNA elements in the human papillomavirus type 16 L2 coding region induces production of high levels of L2 in human cells. J Virol, 77, 11674–11684.

    PubMed  Google Scholar 

  • O'Connor, M. and Bernard, H.U. (1995) Oct-1 activates the epithelial-specific enhancer of human papillomavirus type 16 via a synergistic interaction with NFI at a conserved composite regulatory element. Virology, 207, 77–88.

    PubMed  Google Scholar 

  • Oh, S.T., Longworth, M.S. and Laimins, L.A. (2004) Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11. J Virol, 78, 2620–2626.

    PubMed  CAS  Google Scholar 

  • Okun, M.M., Day, P.M., Greenstone, H.L., Booy, F.P., Lowy, D.R., Schiller, J.T. and Roden, R.B. (2001) L1 interaction domains of papillomavirus l2 necessary for viral genome encapsidation. J Virol, 75, 4332–4342.

    PubMed  CAS  Google Scholar 

  • Ozbun, M.A. and Meyers, C. (1997) Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol, 71, 5161–5172.

    PubMed  CAS  Google Scholar 

  • Ozbun, M.A. and Meyers, C. (1998a) Human papillomavirus type 31b E1 and E2 transcript expression correlates with vegetative viral genome amplification. Virology, 248, 218–230.

    Google Scholar 

  • Ozbun, M.A. and Meyers, C. (1998b) Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. J Virol, 72, 2715–2722.

    Google Scholar 

  • Parish, J.L., Bean, A.M., Park, R.B. and Androphy, E.J. (2006) ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell, 24, 867–876.

    PubMed  CAS  Google Scholar 

  • Park, P., Copeland, W., Yang, L., Wang, T., Botchan, M.R. and Mohr, I.J. (1994) The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. Proc Natl Acad Sci USA, 91, 8700–8704.

    PubMed  CAS  Google Scholar 

  • Park, R.B. and Androphy, E.J. (2002) Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J Virol, 76, 11359–11364.

    PubMed  CAS  Google Scholar 

  • Parkin, D.M. and Bray, F. (2006) Chapter 2: The burden of HPV-related cancers. Vaccine, 24 Suppl 3, S11–25.

    Google Scholar 

  • Patel, D., Huang, S.M., Baglia, L.A. and McCance, D.J. (1999) The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. Embo J, 18, 5061–5072.

    PubMed  CAS  Google Scholar 

  • Phelps, W.C., Yee, C.L., Munger, K. and Howley, P.M. (1988) The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell, 53, 539–547.

    PubMed  CAS  Google Scholar 

  • Raj, K. and Stanley, M.A. (1995) The ATP-binding and ATPase activities of human papillomavirus type 16 E1 are significantly weakened by the absence of prolines in its ATP-binding domain. J Gen Virol, 76 ( Pt 12), 2949–2956.

    PubMed  CAS  Google Scholar 

  • Remm, M., Remm, A. and Ustav, M. (1999) Human papillomavirus type 18 E1 protein is translated from polycistronic mRNA by a discontinuous scanning mechanism. J Virol, 73, 3062–3070.

    PubMed  CAS  Google Scholar 

  • Richards, R.M., Lowy, D.R., Schiller, J.T. and Day, P.M. (2006) Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA, 103, 1522–1527.

    PubMed  CAS  Google Scholar 

  • Roberts, S., Ashmole, I., Gibson, L.J., Rookes, S.M., Barton, G.J. and Gallimore, P.H. (1994) Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. J Virol, 68, 6432–6445.

    PubMed  CAS  Google Scholar 

  • Roden, R.B., Kirnbauer, R., Jenson, A.B., Lowy, D.R. and Schiller, J.T. (1994) Interaction of papillomaviruses with the cell surface. J Virol, 68, 7260–7266.

    PubMed  CAS  Google Scholar 

  • Ruesch, M.N. and Laimins, L.A. (1997) Initiation of DNA synthesis by human papillomavirus E7 oncoproteins is resistant to p21-mediated inhibition of cyclin E-cdk2 activity. J Virol, 71, 5570–5578.

    PubMed  CAS  Google Scholar 

  • Ruesch, M.N. and Laimins, L.A. (1998) Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology, 250, 19–29.

    PubMed  CAS  Google Scholar 

  • Sanders, C.M. and Stenlund, A. (1998) Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. Embo J, 17, 7044–7055.

    PubMed  CAS  Google Scholar 

  • Sanders, C.M. and Stenlund, A. (2000) Transcription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex. J Biol Chem, 275, 3522–3534.

    PubMed  CAS  Google Scholar 

  • Scheffner, M., Huibregtse, J.M., Vierstra, R.D. and Howley, P.M. (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 75, 495–505.

    PubMed  CAS  Google Scholar 

  • Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J. and Howley, P.M. (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 63, 1129–1136.

    PubMed  CAS  Google Scholar 

  • Schiller, J.T., Vass, W.C., Vousden, K.H. and Lowy, D.R. (1986) E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene. J Virol, 57, 1–6.

    PubMed  CAS  Google Scholar 

  • Sedman, J. and Stenlund, A. (1995) Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. Embo J, 14, 6218–6228.

    PubMed  CAS  Google Scholar 

  • Selinka, H.C., Giroglou, T. and Sapp, M. (2002) Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology, 299, 279–287.

    PubMed  CAS  Google Scholar 

  • Sen, E., Alam, S. and Meyers, C. (2004) Genetic and biochemical analysis of cis regulatory elements within the keratinocyte enhancer region of the human papillomavirus type 31 upstream regulatory region during different stages of the viral life cycle. J Virol, 78, 612–629.

    PubMed  CAS  Google Scholar 

  • Shafti-Keramat, S., Handisurya, A., Kriehuber, E., Meneguzzi, G., Slupetzky, K. and Kirnbauer, R. (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol, 77, 13125–13135.

    PubMed  CAS  Google Scholar 

  • Sherr, C.J. and Roberts, J.M. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 9, 1149–1163.

    PubMed  CAS  Google Scholar 

  • Sibbet, G., Romero-Graillet, C., Meneguzzi, G. and Campo, M.S. (2000) alpha6 integrin is not the obligatory cell receptor for bovine papillomavirus type 4. J Gen Virol, 81, 327–334.

    PubMed  CAS  Google Scholar 

  • Singer, A. (1995) Cervical cancer screening: state of the art. Baillieres Clin Obstet Gynaecol, 9, 39–64.

    PubMed  CAS  Google Scholar 

  • Soeda, E., Ferran, M.C., Baker, C.C. and McBride, A.A. (2006) Repression of HPV16 early region transcription by the E2 protein. Virology, 351, 29–41.

    PubMed  CAS  Google Scholar 

  • Sokolowski, M., Zhao, C., Tan, W. and Schwartz, S. (1997) AU-rich mRNA instability elements on human papillomavirus type 1 late mRNAs and c-fos mRNAs interact with the same cellular factors. Oncogene, 15, 2303–2319.

    PubMed  CAS  Google Scholar 

  • Spink, K.M. and Laimins, L.A. (2005) Induction of the human papillomavirus type 31 late promoter requires differentiation but not DNA amplification. J Virol, 79, 4918–4926.

    PubMed  CAS  Google Scholar 

  • Steger, G. and Corbach, S. (1997) Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol, 71, 50–58.

    PubMed  CAS  Google Scholar 

  • Stenlund, A. (2003) Initiation of DNA replication: lessons from viral initiator proteins. Nat Rev Mol Cell Biol, 4, 777–785.

    PubMed  CAS  Google Scholar 

  • Straight, S.W., Herman, B. and McCance, D.J. (1995) The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol, 69, 3185–3192.

    PubMed  CAS  Google Scholar 

  • Straight, S.W., Hinkle, P.M., Jewers, R.J. and McCance, D.J. (1993) The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol, 67, 4521–4532.

    PubMed  CAS  Google Scholar 

  • Stubenrauch, F. and Laimins, L.A. (1999) Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol, 9, 379–386.

    PubMed  CAS  Google Scholar 

  • Stubenrauch, F., Lim, H.B. and Laimins, L.A. (1998) Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J Virol, 72, 1071–1077.

    PubMed  CAS  Google Scholar 

  • Tan, S.H., Leong, L.E., Walker, P.A. and Bernard, H.U. (1994) The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol, 68, 6411–6420.

    PubMed  CAS  Google Scholar 

  • Tan, W., Felber, B.K., Zolotukhin, A.S., Pavlakis, G.N. and Schwartz, S. (1995) Efficient expression of the human papillomavirus type 16 L1 protein in epithelial cells by using Rev and the Rev-responsive element of human immunodeficiency virus or the cis-acting transactivation element of simian retrovirus type 1. J Virol, 69, 5607–5620.

    PubMed  CAS  Google Scholar 

  • Tan, W. and Schwartz, S. (1995) The Rev protein of human immunodeficiency virus type 1 counteracts the effect of an AU-rich negative element in the human papillomavirus type 1 late 3′ untranslated region. J Virol, 69, 2932–2945.

    PubMed  CAS  Google Scholar 

  • Terhune, S.S., Milcarek, C. and Laimins, L.A. (1999) Regulation of human papillomavirus type 31 polyadenylation during the differentiation-dependent life cycle. J Virol, 73, 7185–7192.

    PubMed  CAS  Google Scholar 

  • Thierry, F., Heard, J.M., Dartmann, K. and Yaniv, M. (1987) Characterization of a transcriptional promoter of human papillomavirus 18 and modulation of its expression by simian virus 40 and adenovirus early antigens. J Virol, 61, 134–142.

    PubMed  CAS  Google Scholar 

  • Thomas, J.T., Hubert, W.G., Ruesch, M.N. and Laimins, L.A. (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci USA, 96, 8449–8454.

    PubMed  CAS  Google Scholar 

  • Thomas, J.T., Oh, S.T., Terhune, S.S. and Laimins, L.A. (2001) Cellular changes induced by low-risk human papillomavirus type 11 in keratinocytes that stably maintain viral episomes. J Virol, 75, 7564–7571.

    PubMed  CAS  Google Scholar 

  • Thomas, M.C. and Chiang, C.M. (2005) E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell, 17, 251–264.

    PubMed  CAS  Google Scholar 

  • Tommasino, M., Adamczewski, J.P., Carlotti, F., Barth, C.F., Manetti, R., Contorni, M., Cavalieri, F., Hunt, T. and Crawford, L. (1993) HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene, 8, 195–202.

    PubMed  CAS  Google Scholar 

  • Ustav, M. and Stenlund, A. (1991) Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. Embo J, 10, 449–457.

    PubMed  CAS  Google Scholar 

  • Ustav, M., Ustav, E., Szymanski, P. and Stenlund, A. (1991) Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. Embo J, 10, 4321–4329.

    PubMed  CAS  Google Scholar 

  • Valle, G.F. and Banks, L. (1995) The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol, 76 ( Pt 5), 1239–1245.

    PubMed  Google Scholar 

  • Veldman, T., Horikawa, I., Barrett, J.C. and Schlegel, R. (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol, 75, 4467–4472.

    PubMed  CAS  Google Scholar 

  • Villa, L.L., Costa, R.L., Petta, C.A., Andrade, R.P., Ault, K.A., Giuliano, A.R., Wheeler, C.M., Koutsky, L.A., Malm, C., Lehtinen, M., Skjeldestad, F.E., Olsson, S.E., Steinwall, M., Brown, D.R., Kurman, R.J., Ronnett, B.M., Stoler, M.H., Ferenczy, A., Harper, D.M., Tamms, G.M., Yu, J., Lupinacci, L., Railkar, R., Taddeo, F.J., Jansen, K.U., Esser, M.T., Sings, H.L., Saah, A.J. and Barr, E. (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol, 6, 271–278.

    PubMed  Google Scholar 

  • Volpers, C., Unckell, F., Schirmacher, P., Streeck, R.E. and Sapp, M. (1995) Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells. J Virol, 69, 3258–3264.

    PubMed  CAS  Google Scholar 

  • Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J. and Munoz, N. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189, 12–19.

    PubMed  CAS  Google Scholar 

  • Wallin, K.L., Wiklund, F., Angstrom, T., Bergman, F., Stendahl, U., Wadell, G., Hallmans, G. and Dillner, J. (1999) Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. N Engl J Med, 341, 1633–1638.

    PubMed  CAS  Google Scholar 

  • Wang, Q., Griffin, H., Southern, S., Jackson, D., Martin, A., McIntosh, P., Davy, C., Masterson, P.J., Walker, P.A., Laskey, P., Omary, M.B. and Doorbar, J. (2004) Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol, 78, 821–833.

    PubMed  CAS  Google Scholar 

  • Webb, A. and Kaur, P. (2006) Epidermal stem cells. Front Biosci, 11, 1031–1041.

    PubMed  CAS  Google Scholar 

  • Werness, B.A., Levine, A.J. and Howley, P.M. (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science, 248, 76–79.

    PubMed  CAS  Google Scholar 

  • Wiley, D. and Masongsong, E. (2006) Human papillomavirus: the burden of infection. Obstet Gynecol Surv, 61, S3–14.

    PubMed  Google Scholar 

  • Wilson, R., Fehrmann, F. and Laimins, L.A. (2005) Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol, 79, 6732–6740.

    PubMed  CAS  Google Scholar 

  • Wilson, R., Ryan, G.B., Knight, G.L., Laimins, L.A. and Roberts, S. (2007) The full-length E1;E4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression. Virology.

    Google Scholar 

  • Yang, R., Day, P.M., Yutzy, W.H.t., Lin, K.Y., Hung, C.F. and Roden, R.B. (2003) Cell surface-binding motifs of L2 that facilitate papillomavirus infection. J Virol, 77, 3531–3541.

    PubMed  CAS  Google Scholar 

  • You, J., Croyle, J.L., Nishimura, A., Ozato, K. and Howley, P.M. (2004) Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell, 117, 349–360.

    PubMed  CAS  Google Scholar 

  • Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J.W. and Jansen-Durr, P. (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene, 13, 2323–2330.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Chen, W. and Roman, A. (2006) The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci USA, 103, 437–442.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Li, P., Wang, E., Brahmi, Z., Dunn, K.W., Blum, J.S. and Roman, A. (2003) The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. Virology, 310, 100–108.

    PubMed  CAS  Google Scholar 

  • Zhao, K.N., Gu, W., Fang, N.X., Saunders, N.A. and Frazer, I.H. (2005) Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo. Mol Cell Biol, 25, 8643–8655.

    PubMed  CAS  Google Scholar 

  • Zhao, K.N., Liu, W.J. and Frazer, I.H. (2003) Codon usage bias and A+T content variation in human papillomavirus genomes. Virus Res, 98, 95–104.

    PubMed  CAS  Google Scholar 

  • Zheng, Z.M. and Baker, C.C. (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci, 11, 2286–2302.

    PubMed  CAS  Google Scholar 

  • Zhou, J., Liu, W.J., Peng, S.W., Sun, X.Y. and Frazer, I. (1999) Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J Virol, 73, 4972–4982.

    PubMed  CAS  Google Scholar 

  • Zhou, J., Sun, X.Y., Stenzel, D.J. and Frazer, I.H. (1991) Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology, 185, 251–257.

    PubMed  CAS  Google Scholar 

  • Zielinski, G.D., Snijders, P.J., Rozendaal, L., Voorhorst, F.J., van der Linden, H.C., Runsink, A.P., de Schipper, F.A. and Meijer, C.J. (2001) HPV presence precedes abnormal cytology in women developing cervical cancer and signals false negative smears. Br J Cancer, 85, 398–404.

    PubMed  CAS  Google Scholar 

  • Zimmermann, H., Degenkolbe, R., Bernard, H.U. and O'Connor, M.J. (1999) The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol, 73, 6209–6219.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to LAL from the NCI and NIAID. CAM was supported by a fellowship from the American Cancer Society (PF-06-177-01-MBC) and a NIH post-doctoral training grant (5T32 AR007593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laimonis A. Laimins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Moody, C.A., Laimins, L.A. (2009). The Life Cycle of Human Papillomaviruses. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_4

Download citation

Publish with us

Policies and ethics