Skip to main content

Epstein–Barr Virus Latent Infection Nuclear Proteins: Genome Maintenance and Regulation of Lymphocyte Cell Growth and Survival

  • Chapter
  • First Online:
DNA Tumor Viruses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burkitt, D. and G.T. O'Conor, Malignant lymphoma in African children. I. A clinical syndrome. Cancer, 1961. 14: pp. 258–69.

    Article  PubMed  CAS  Google Scholar 

  2. Epstein, M., B. Achong, and Y. Barr, Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet, 1964. 1(702–703).

    Article  PubMed  CAS  Google Scholar 

  3. Chang, Y., et al., Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, 1994. 266(5192): pp. 1865–9.

    Article  PubMed  CAS  Google Scholar 

  4. Rickinson, A.B. and E.D. Kieff, Epstein-Barr Virus, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2007, Lippincott Williams & Wilkins, a Wolters Kluwer Business: Philadelphia. pp. 2655–700.

    Google Scholar 

  5. Kieff, E.D. and A.B. Rickinson, Epstein-Barr Virus and Its Replicationin Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2007, Lippincott WIlliams and WIlkins, a Wolters Kluwer Business: Philadelphia. pp. 2603–54.

    Google Scholar 

  6. Ganem, D., Kaposi's Sarcoma Herpes Virus, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2007, Lippincott, WIlliams, and Wilkins, a Walters Kluwer Business: Philadelphia. pp. 2847–88.

    Google Scholar 

  7. Falk, L.A., et al., Transformation of lymphocytes by Herpesvirus papio. Int J Cancer, 1977. 20(2): pp. 219–26.

    Article  PubMed  CAS  Google Scholar 

  8. Rabin, H., et al., Transforming activity and antigenicity of an Epstein-Barr-like virus from lymphoblastoid cell lines of baboons with lymphoid disease. Intervirology, 1977. 8(4): pp. 240–9.

    Article  PubMed  CAS  Google Scholar 

  9. Gerber, P., et al., Biologic and antigenic characteristics of Epstein-Barr virus-related Herpesviruses of chimpanzees and baboons. Int J Cancer, 1977. 20(3): pp. 448–59.

    Article  PubMed  CAS  Google Scholar 

  10. Gerber, P. and D. Lorenz, Complement-fixing antibodies reactive with Epstein-Barr virus in sera of marmosets and prosimians. Proc Soc Exp Biol Med, 1974. 145(2): pp. 654–7.

    PubMed  CAS  Google Scholar 

  11. Russo, J.J., et al., Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA, 1996. 93(25): pp. 14862–7.

    Article  PubMed  CAS  Google Scholar 

  12. Bocker, J.F., et al., Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology, 1980. 101(1): pp. 291–5.

    Article  PubMed  CAS  Google Scholar 

  13. Falk, L., et al., Herpesvirus papio: state and properties of intracellular viral DNA in baboon lymphoblastoid cell lines. Int J Cancer, 1979. 24(1): pp. 75–9.

    Article  PubMed  CAS  Google Scholar 

  14. Heller, M., P. Gerber, and E. Kieff, Herpesvirus papio DNA is similar in organization to Epstein-Barr virus DNA. J Virol, 1981. 37(2): pp. 698–709.

    PubMed  CAS  Google Scholar 

  15. Heller, M., P. Gerber, and E. Kieff, DNA of herpesvirus pan, a third member of the Epstein-Barr virus- Herpesvirus papio group. J Virol, 1982. 41(3): pp. 931–9.

    PubMed  CAS  Google Scholar 

  16. Cho, Y., et al., An Epstein-Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci USA, 2001. 98(3): pp. 1224–9.

    Article  PubMed  CAS  Google Scholar 

  17. Rivailler, P., Y.G. Cho, and F. Wang, Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol, 2002. 76(23): pp. 12055–68.

    Article  PubMed  CAS  Google Scholar 

  18. Rivailler, P., et al., Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J Virol, 2002. 76(1): pp. 421–6.

    Article  PubMed  CAS  Google Scholar 

  19. Albrecht, J.C., Primary structure of the Herpesvirus ateles genome. J Virol, 2000. 74(2): pp. 1033–7.

    Article  PubMed  CAS  Google Scholar 

  20. Alexander, L., et al., The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol, 2000. 74(7): pp. 3388–98.

    Article  PubMed  CAS  Google Scholar 

  21. Ensser, A., R. Pflanz, and B. Fleckenstein, Primary structure of the alcelaphine herpesvirus 1 genome. J Virol, 1997. 71(9): pp. 6517–25.

    PubMed  CAS  Google Scholar 

  22. Telford, E.A., et al., The DNA sequence of equine herpesvirus 2. J Mol Biol, 1995. 249(3): pp. 520–8.

    Article  PubMed  CAS  Google Scholar 

  23. McGeoch, D.J., F.J. Rixon, and A.J. Davison, Topics in herpesvirus genomics and evolution. Virus Res, 2006. 117(1): pp. 90–104.

    Article  PubMed  CAS  Google Scholar 

  24. Davison, A.J., Evolution of the herpesviruses. Vet Microbiol, 2002. 86(1–2): pp. 69–88.

    Article  PubMed  CAS  Google Scholar 

  25. Yates, J.L., N. Warren, and B. Sugden, Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, 1985. 313(6005): pp. 812–5.

    Article  PubMed  CAS  Google Scholar 

  26. Ballestas, M.E., P.A. Chatis, and K.M. Kaye, Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 1999. 284(5414): pp. 641–4.

    Article  PubMed  CAS  Google Scholar 

  27. Barbera, A.J., et al., The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science, 2006. 311(5762): pp. 856–61.

    Article  PubMed  CAS  Google Scholar 

  28. Pope, J., Establishment of cell lines from peripheral leukocytes in infectious mononucleosis. Nature, 1967. 216: pp. 810–811.

    Article  PubMed  CAS  Google Scholar 

  29. Henle, W., et al., Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science, 1967. 157(792): pp. 1064–5.

    Article  PubMed  CAS  Google Scholar 

  30. Ho, M., et al., Epstein-Barr virus infections and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: the role of primary infection. J Infect Dis, 1985. 152(5): pp. 876–86.

    Article  PubMed  CAS  Google Scholar 

  31. Shope, T., D. Dechairo, and G. Miller, Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. Proc Natl Acad Sci USA, 1973. 70(9): pp. 2487–91.

    Article  PubMed  CAS  Google Scholar 

  32. Deinhardt, F., et al., Response of marmosets to experimental infection with Epstein-Barr virus. IARC Sci Publ, 1975. (11(Pt 2)): pp. 161–8.

    PubMed  Google Scholar 

  33. Niedobitek, G., et al., Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. Blood, 1992. 79(10): pp. 2520–6.

    PubMed  CAS  Google Scholar 

  34. Young, L.S. and A.B. Rickinson, Epstein-Barr virus: 40 years on. Nat Rev Cancer, 2004. 4(10): pp. 757–68.

    Article  PubMed  CAS  Google Scholar 

  35. Yin, C.C., et al., EBV-associated B- and T-cell posttransplant lymphoproliferative disorders following primary EBV infection in a kidney transplant recipient. Am J Clin Pathol, 2005. 123(2): pp. 222–8.

    Article  PubMed  Google Scholar 

  36. Gottschalk, S., C.M. Rooney, and H.E. Heslop, Post-transplant lymphoproliferative disorders. Annu Rev Med, 2005. 56: pp. 29–44.

    Article  PubMed  CAS  Google Scholar 

  37. Fallo, A., et al., Epstein-Barr virus associated with primary CNS lymphoma and disseminated BCG infection in a child with AIDS. Int J Infect Dis, 2005. 9(2): pp. 96–103.

    Article  PubMed  Google Scholar 

  38. Falk, K., et al., Expression of Epstein-Barr virus-encoded proteins and B-cell markers in fatal infectious mononucleosis. Int J Cancer, 1990. 46(6): pp. 976–84.

    Article  PubMed  CAS  Google Scholar 

  39. Coffey, A.J., et al., Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet, 1998. 20(2): pp. 129–35.

    Article  PubMed  CAS  Google Scholar 

  40. Lombardi, L., E.W. Newcomb, and R. Dalla-Favera, Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell, 1987. 49(2): pp. 161–70.

    Article  PubMed  CAS  Google Scholar 

  41. Knowles, D.M., et al., Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood, 1989. 73(3): pp. 792–9.

    PubMed  CAS  Google Scholar 

  42. Neri, A., et al., Epstein-Barr virus infection precedes clonal expansion in Burkitt's and acquired immunodeficiency syndrome-associated lymphoma. Blood, 1991. 77(5): pp. 1092–5.

    PubMed  CAS  Google Scholar 

  43. Gaidano, G., A. Carbone, and R. Dalla-Favera, Genetic basis of acquired immunodeficiency syndrome-related lymphomagenesis. J Natl Cancer Inst Monogr, 1998. 23: p. 95–100.

    PubMed  Google Scholar 

  44. Nador, R.G., et al., Human immunodeficiency virus (HIV)-associated polymorphic lymphoproliferative disorders. Am J Surg Pathol, 2003. 27(3): pp. 293–302.

    Article  PubMed  Google Scholar 

  45. Tinguely, M., et al., Analysis of a clonally related mantle cell and Hodgkin lymphoma indicates Epstein-Barr virus infection of a Hodgkin/Reed-Sternberg cell precursor in a germinal center. Am J Surg Pathol, 2003. 27(11): pp. 1483–8.

    Article  PubMed  Google Scholar 

  46. Kurth, J., et al., Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci USA, 2003. 100(8): pp. 4730–5.

    Article  PubMed  CAS  Google Scholar 

  47. Kuppers, R., B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol, 2003. 3(10): pp. 801–12.

    Article  PubMed  CAS  Google Scholar 

  48. Lin, J., et al., Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J Virol, 2002. 76(1): pp. 232–42.

    Article  PubMed  CAS  Google Scholar 

  49. Farrell, P.J., Epstein-Barr virus. The B95-8 strain map. Methods Mol Biol, 2001. 174: pp. 3–12.

    PubMed  CAS  Google Scholar 

  50. Cohen, J.I., F. Wang, and E. Kieff, Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol, 1991. 65(5): pp. 2545–54.

    PubMed  CAS  Google Scholar 

  51. Mannick, J.B., et al., The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol, 1991. 65(12): pp. 6826–37.

    PubMed  CAS  Google Scholar 

  52. Tomkinson, B., E. Robertson, and E. Kieff, Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol, 1993. 67(4): pp. 2014–25.

    PubMed  CAS  Google Scholar 

  53. Tong, X., et al., The EBNA-2 arginine-glycine domain is critical but not essential for B- lymphocyte growth transformation; the rest of region 3 lacks essential interactive domains. J Virol, 1994. 68(10): pp. 6188–97.

    PubMed  CAS  Google Scholar 

  54. Yalamanchili, R., et al., Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology, 1994. 204(2): pp. 634–41.

    Article  PubMed  CAS  Google Scholar 

  55. Harada, S., R. Yalamanchili, and E. Kieff, Residues 231 to 280 of the Epstein-Barr virus nuclear protein 2 are not essential for primary B-lymphocyte growth transformation. J Virol, 1998. 72(12): pp. 9948–54.

    PubMed  CAS  Google Scholar 

  56. Maruo, S., et al., Epstein-Barr Virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth. J Virol, 2003. 77(19): pp. 10437–47.

    Article  PubMed  CAS  Google Scholar 

  57. Cohen, J.I., et al., Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA, 1989. 86(23): pp. 9558–62.

    Article  PubMed  CAS  Google Scholar 

  58. Maruo, S., et al., Epstein-Barr virus nuclear protein 3A domains essential for growth of lymphoblasts: transcriptional regulation through RBP-Jkappa/CBF1 is critical. J Virol, 2005. 79(16): pp. 10171–9.

    Article  PubMed  CAS  Google Scholar 

  59. Robertson, E. and E. Kieff, Reducing the complexity of the transforming Epstein-Barr virus genome to 64 kilobase pairs. J Virol, 1995. 69(2): pp. 983–93.

    PubMed  CAS  Google Scholar 

  60. Tomkinson, B. and E. Kieff, Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection. J Virol, 1992. 66(2): pp. 780–9.

    PubMed  CAS  Google Scholar 

  61. Humme, S., et al., The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA, 2003. 100(19): pp. 10989–94.

    Article  PubMed  CAS  Google Scholar 

  62. Bochkarev, A., et al., Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. Cell, 1996. 84(5): pp. 791–800.

    Article  PubMed  CAS  Google Scholar 

  63. Bochkarev, A., et al., The 2.2 A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J Mol Biol, 1998. 284(5): pp. 1273–8.

    Article  PubMed  CAS  Google Scholar 

  64. Deng, Z., et al., Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol, 2003. 77(22): pp. 11992–2001.

    Article  PubMed  CAS  Google Scholar 

  65. Hung, S.C., M.S. Kang, and E. Kieff, Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci USA, 2001. 98(4): pp. 1865–70.

    Article  PubMed  CAS  Google Scholar 

  66. Kennedy, G. and B. Sugden, EBNA-1, a bifunctional transcriptional activator. Mol Cell Biol, 2003. 23(19): pp. 6901–8.

    Article  PubMed  CAS  Google Scholar 

  67. Rawlins, D.R., et al., Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell, 1985. 42(3): pp. 859–68.

    Article  PubMed  CAS  Google Scholar 

  68. Shire, K., et al., Regulation of the EBNA1 Epstein-Barr virus protein by serine phosphorylation and arginine methylation. J Virol, 2006. 80(11): pp. 5261–72.

    Article  PubMed  CAS  Google Scholar 

  69. Yates, J., et al., A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA, 1984. 81(12): pp. 3806–10.

    Article  PubMed  CAS  Google Scholar 

  70. Altmann, M., et al., Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes. Proc Natl Acad Sci USA, 2006. 103(38): pp. 14188–93.

    Article  PubMed  CAS  Google Scholar 

  71. Harada, S. and E. Kieff, Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain- mediated transcriptional activation. J Virol, 1997. 71(9): pp. 6611–8.

    PubMed  CAS  Google Scholar 

  72. Nitsche, F., A. Bell, and A. Rickinson, Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol, 1997. 71(9): pp. 6619–28.

    PubMed  CAS  Google Scholar 

  73. Peng, C.W., et al., Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci USA, 2004. 101(4): pp. 1033–8.

    Article  PubMed  CAS  Google Scholar 

  74. McCann, E.M., et al., Genetic analysis of the Epstein-Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol, 2001. 82(Pt 12): pp. 3067–79.

    PubMed  CAS  Google Scholar 

  75. Peng, R., J. Tan, and P.D. Ling, Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol, 2000. 74(21): pp. 9953–63.

    Article  PubMed  CAS  Google Scholar 

  76. Ling, P.D., et al., Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J, 2005. 24(20): pp. 3565–75.

    Article  PubMed  CAS  Google Scholar 

  77. Portal, D., A. Rosendorff, and E. Kieff, Epstein-Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4. Proc Natl Acad Sci USA, 2006. 103(51): pp. 19278–83.

    Article  PubMed  CAS  Google Scholar 

  78. Grossman, S.R., et al., The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci USA, 1994. 91(16): pp. 7568–72.

    Article  PubMed  CAS  Google Scholar 

  79. Hammerschmidt, W. and B. Sugden, Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature, 1989. 340(6232): pp. 393–7.

    Article  PubMed  CAS  Google Scholar 

  80. Henkel, T., et al., Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science, 1994. 265(5168): pp. 92–5.

    Article  PubMed  CAS  Google Scholar 

  81. Wang, L., S.R. Grossman, and E. Kieff, Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci USA, 2000. 97(1): pp. 430–5.

    Article  PubMed  CAS  Google Scholar 

  82. Zhao, B., et al., RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci USA, 2006. 103(6): pp. 1900–5.

    Article  PubMed  CAS  Google Scholar 

  83. Kaiser, C., et al., The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol, 1999. 73(5): pp. 4481–4.

    PubMed  CAS  Google Scholar 

  84. Gordadze, A.V., et al., Notch1IC partially replaces EBNA2 function in B cells immortalized by Epstein-Barr virus. J Virol, 2001. 75(13): pp. 5899–912.

    Article  PubMed  CAS  Google Scholar 

  85. Hofelmayr, H., et al., Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells. J Virol, 2001. 75(5): pp. 2033–40.

    Article  PubMed  CAS  Google Scholar 

  86. Knight, J.S., N. Sharma, and E.S. Robertson, SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen. Mol Cell Biol, 2005. 25(5): pp. 1749–63.

    Article  PubMed  CAS  Google Scholar 

  87. Marshall, D. and C. Sample, Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol, 1995. 69(6): pp. 3624–30.

    PubMed  CAS  Google Scholar 

  88. Robertson, E.S., et al., Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol, 1995. 69(5): pp. 3108–16.

    PubMed  CAS  Google Scholar 

  89. Robertson, E.S., J. Lin, and E. Kieff, The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J Virol, 1996. 70(5): pp. 3068–74.

    PubMed  CAS  Google Scholar 

  90. Waltzer, L., et al., Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa- EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J Virol, 1996. 70(9): pp. 5909–15.

    PubMed  CAS  Google Scholar 

  91. Zhao, B., et al., Transcriptional regulatory properties of Epstein-Barr virus nuclear antigen 3C are conserved in simian lymphocryptoviruses. J Virol, 2003. 77(10): pp. 5639–48.

    Article  PubMed  CAS  Google Scholar 

  92. Zhao, B. and C.E. Sample, Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol, 2000. 74(11): pp. 5151–60.

    Article  PubMed  CAS  Google Scholar 

  93. Maruo, S., et al., Epstein-Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells. Proc Natl Acad Sci USA, 2006. 103(51): pp. 19500–5.

    Article  PubMed  CAS  Google Scholar 

  94. Jimenez-Ramirez, C., et al., Epstein-Barr virus EBNA-3C is targeted to and regulates expression from the bidirectional LMP-1/2B promoter. J Virol, 2006. 80(22): pp. 11200–8.

    Article  PubMed  CAS  Google Scholar 

  95. Allday, M.J., D.H. Crawford, and J.A. Thomas, Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol, 1993. 74(Pt 3): pp. 361–9.

    Article  PubMed  CAS  Google Scholar 

  96. Izumi, K.M., et al., The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol, 1999. 19(8): pp. 5759–67.

    PubMed  CAS  Google Scholar 

  97. Izumi, K.M. and E.D. Kieff, The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA, 1997. 94(23): pp. 12592–7.

    Article  PubMed  CAS  Google Scholar 

  98. Kaye, K.M., K.M. Izumi, and E. Kieff, Epstein-Barr virus latent membrane protein 1 is essential for B- lymphocyte growth transformation. Proc Natl Acad Sci USA, 1993. 90(19): pp. 9150–4.

    Article  PubMed  CAS  Google Scholar 

  99. Mosialos, G., et al., The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell, 1995. 80(3): pp. 389–99.

    Article  PubMed  CAS  Google Scholar 

  100. Alfieri, C., M. Birkenbach, and E. Kieff, Early events in Epstein-Barr virus infection of human B lymphocytes. Virology, 1991. 181(2): pp. 595–608.

    Article  PubMed  CAS  Google Scholar 

  101. Cohen, J.I. and E. Kieff, An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol, 1991. 65(11): pp. 5880–5.

    PubMed  CAS  Google Scholar 

  102. Cludts, I. and P.J. Farrell, Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol, 1998. 72(3): pp. 1862–9.

    PubMed  CAS  Google Scholar 

  103. Dalbies-Tran, R., et al., Amino acids of Epstein-Barr virus nuclear antigen 3A essential for repression of Jkappa-mediated transcription and their evolutionary conservation. J Virol, 2001. 75(1): pp. 90–9.

    Article  PubMed  CAS  Google Scholar 

  104. Bain, M., et al., Epstein-Barr virus nuclear antigen 3C is a powerful repressor of transcription when tethered to DNA. J Virol, 1996. 70(4): pp. 2481–9.

    PubMed  CAS  Google Scholar 

  105. Radkov, S.A., et al., Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol, 1997. 71(11): pp. 8552–62.

    PubMed  CAS  Google Scholar 

  106. Radkov, S.A., et al., Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol, 1999. 73(7): pp. 5688–97.

    PubMed  CAS  Google Scholar 

  107. Rosendorff, A., et al., EBNA3C coactivation with EBNA2 requires a SUMO homology domain. J Virol, 2004. 78(1): pp. 367–77.

    Article  PubMed  CAS  Google Scholar 

  108. Parker, G.A., et al., Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene, 1996. 13(12): pp. 2541–9.

    PubMed  CAS  Google Scholar 

  109. Parker, G.A., R. Touitou, and M.J. Allday, Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene, 2000. 19(5): pp. 700–9.

    Article  PubMed  CAS  Google Scholar 

  110. Touitou, R., et al., Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol, 2001. 75(16): pp. 7749–55.

    Article  PubMed  CAS  Google Scholar 

  111. Hickabottom, M., et al., Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem, 2002. 277(49): pp. 47197–204.

    Article  PubMed  CAS  Google Scholar 

  112. Touitou, R., et al., Epstein-Barr virus EBNA3 proteins bind to the C8/alpha7 subunit of the 20S proteasome and are degraded by 20S proteasomes in vitro, but are very stable in latently infected B cells. J Gen Virol, 2005. 86(Pt 5): pp. 1269–77.

    Article  PubMed  CAS  Google Scholar 

  113. Orre, R.S., et al., Prothymosin alpha functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro. J Biol Chem, 2001. 276(3): pp. 1794–9.

    PubMed  CAS  Google Scholar 

  114. Subramanian, C., et al., Epstein-Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J Virol, 2002. 76(10): pp. 4699–708.

    Article  PubMed  CAS  Google Scholar 

  115. Subramanian, C. and E.S. Robertson, The metastatic suppressor Nm23-H1 interacts with EBNA3C at sequences located between the glutamine- and proline-rich domains and can cooperate in activation of transcription. J Virol, 2002. 76(17): pp. 8702–9.

    Article  PubMed  CAS  Google Scholar 

  116. Knight, J.S., et al., Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol, 2003. 77(7): pp. 4261–72.

    Article  PubMed  CAS  Google Scholar 

  117. Knight, J.S. and E.S. Robertson, Epstein-Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity. J Virol, 2004. 78(4): pp. 1981–91.

    Article  PubMed  CAS  Google Scholar 

  118. Knight, J.S., et al., A cyclin-binding motif within the amino-terminal homology domain of EBNA3C binds cyclin A and modulates cyclin A-dependent kinase activity in Epstein-Barr virus-infected cells. J Virol, 2004. 78(23): pp. 12857–67.

    Article  PubMed  CAS  Google Scholar 

  119. Murakami, M., et al., Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol, 2005. 79(3): pp. 1559–68.

    Article  PubMed  CAS  Google Scholar 

  120. Reisman, D. and B. Sugden, trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol, 1986. 6(11): pp. 3838–46.

    PubMed  CAS  Google Scholar 

  121. Sears, J., et al., The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol, 2004. 78(21): pp. 11487–505.

    Article  PubMed  CAS  Google Scholar 

  122. Komano, J. and K. Takada, Role of bcl-2 in Epstein-Barr virus-induced malignant conversion of Burkitt's lymphoma cell line Akata. J Virol, 2001. 75(3): pp. 1561–4.

    Article  PubMed  CAS  Google Scholar 

  123. Roth, G., T. Curiel, and J. Lacy, Epstein-Barr viral nuclear antigen 1 antisense oligodeoxynucleotide inhibits proliferation of Epstein-Barr virus-immortalized B cells. Blood, 1994. 84(2): pp. 582–7.

    PubMed  CAS  Google Scholar 

  124. Hong, M., et al., Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt's lymphoma cells. J Cancer Res Clin Oncol, 2006. 132(1): pp. 1–8.

    Article  PubMed  CAS  Google Scholar 

  125. Tanner, J., et al., Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell, 1987. 50(2): pp. 203–13.

    Article  PubMed  CAS  Google Scholar 

  126. Sinclair, A.J. and P.J. Farrell, Host cell requirements for efficient infection of quiescent primary B lymphocytes by Epstein-Barr virus. J Virol, 1995. 69(9): pp. 5461–8.

    PubMed  CAS  Google Scholar 

  127. Guerreiro-Cacais, A.O., et al., Capacity of Epstein-Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol, 2004. 85(Pt 10): pp. 2767–78.

    Article  PubMed  CAS  Google Scholar 

  128. Ressing, M.E., et al., Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. J Virol, 2005. 79(2): pp. 841–52.

    Article  PubMed  CAS  Google Scholar 

  129. Mullen, M.M., et al., Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol Cell, 2002. 9(2): pp. 375–85.

    Article  PubMed  CAS  Google Scholar 

  130. Nashar, T.O. and J.R. Drake, Dynamics of MHC class II-activating signals in murine resting B cells. J Immunol, 2006. 176(2): pp. 827–38.

    PubMed  CAS  Google Scholar 

  131. Hurley, E.A. and D.A. Thorley-Lawson, B cell activation and the establishment of Epstein-Barr virus latency. J Exp Med, 1988. 168(6): pp. 2059–75.

    Article  PubMed  CAS  Google Scholar 

  132. Dambaugh, T., et al., U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci USA, 1984. 81(23): pp. 7632–6.

    Article  PubMed  CAS  Google Scholar 

  133. Wang, F., et al., A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. J Virol, 1987. 61(4): pp. 945–54.

    PubMed  CAS  Google Scholar 

  134. van Santen, V., et al., RNA encoded by the IR1-U2 region of Epstein-Barr virus DNA in latently infected, growth-transformed cells. J Virol, 1983. 46(2): pp. 424–33.

    PubMed  CAS  Google Scholar 

  135. Abbot, S.D., et al., Epstein-Barr virus nuclear antigen 2 induces expression of the virus- encoded latent membrane protein. J Virol, 1990. 64(5): pp. 2126–34.

    PubMed  CAS  Google Scholar 

  136. Tsang, S.F., et al., Delineation of the cis-acting element mediating EBNA-2 transactivation of latent infection membrane protein expression. J Virol, 1991. 65(12): pp. 6765–71.

    PubMed  CAS  Google Scholar 

  137. Dou, S., et al., The recombination signal sequence-binding protein RBP-2 N functions as a transcriptional repressor. Mol Cell Biol, 1994. 14(5): pp. 3310–9.

    PubMed  CAS  Google Scholar 

  138. Kovall, R.A. and W.A. Hendrickson, Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J, 2004. 23(17): pp. 3441–51.

    Article  PubMed  CAS  Google Scholar 

  139. Wilson, J.J. and R.A. Kovall, Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell, 2006. 124(5): pp. 985–96.

    Article  PubMed  CAS  Google Scholar 

  140. Nam, Y., et al., Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell, 2006. 124(5): pp. 973–83.

    Article  PubMed  CAS  Google Scholar 

  141. Nam, Y., et al., Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J Biol Chem, 2003. 278(23): pp. 21232–9.

    Article  PubMed  CAS  Google Scholar 

  142. Weng, A.P., et al., c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev, 2006. 20(15): pp. 2096–109.

    Article  PubMed  CAS  Google Scholar 

  143. Zhou, S., et al., A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol, 2000. 74(4): pp. 1939–47.

    Article  PubMed  CAS  Google Scholar 

  144. Zhou, S. and S.D. Hayward, Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol Cell Biol, 2001. 21(18): pp. 6222–32.

    Article  PubMed  CAS  Google Scholar 

  145. Johannsen, E., et al., Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J Virol, 1995. 69(1): pp. 253–62.

    PubMed  CAS  Google Scholar 

  146. Fuentes-Panana, E.M., et al., Regulation of the Epstein-Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol, 2000. 74(17): pp. 8166–75.

    Article  PubMed  CAS  Google Scholar 

  147. Tong, X., et al., The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci USA, 1995. 92(8): pp. 3259–63.

    Article  PubMed  CAS  Google Scholar 

  148. Tong, X., et al., The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol, 1995. 15(9): pp. 4735–44.

    PubMed  CAS  Google Scholar 

  149. Tong, X., et al., The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol, 1995. 69(1): pp. 585–8.

    PubMed  CAS  Google Scholar 

  150. Peng, R., et al., The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol, 2005. 79(7): pp. 4492–505.

    Article  PubMed  CAS  Google Scholar 

  151. Petti, L., C. Sample, and E. Kieff, Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology, 1990. 176(2): pp. 563–74.

    Article  PubMed  CAS  Google Scholar 

  152. Peng, C.W., et al., Hsp72 up-regulates Epstein-Barr virus EBNALP coactivation with EBNA2. Blood, 2007. 109(12): pp. 5447–54.

    Article  PubMed  CAS  Google Scholar 

  153. Sample, J. and E. Kieff, Transcription of the Epstein-Barr virus genome during latency in growth- transformed lymphocytes. J Virol, 1990. 64(4): pp. 1667–74.

    PubMed  CAS  Google Scholar 

  154. Sugimoto, M., et al., Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res, 2004. 64(10): pp. 3361–4.

    Article  PubMed  CAS  Google Scholar 

  155. Sample, J., et al., Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol, 1990. 64(9): pp. 4084–92.

    PubMed  CAS  Google Scholar 

  156. Rickinson, A.B., L.S. Young, and M. Rowe, Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol, 1987. 61(5): pp. 1310–7.

    PubMed  CAS  Google Scholar 

  157. Ling, P.D., J.J. Ryon, and S.D. Hayward, EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol, 1993. 67(6): pp. 2990–3003.

    PubMed  CAS  Google Scholar 

  158. Harada, S., R. Yalamanchili, and E. Kieff, Epstein-Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. J Virol, 2001. 75(5): pp. 2482–7.

    Article  PubMed  CAS  Google Scholar 

  159. Yalamanchili, R., S. Harada, and E. Kieff, The N-terminal half of EBNA2, except for seven prolines, is not essential for primary B-lymphocyte growth transformation. J Virol, 1996. 70(4): pp. 2468–73.

    PubMed  CAS  Google Scholar 

  160. Wang, F., et al., Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci USA, 1987. 84(10): pp. 3452–6.

    Article  PubMed  CAS  Google Scholar 

  161. Wang, F., et al., Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol, 1990. 64(5): pp. 2309–18.

    PubMed  CAS  Google Scholar 

  162. Wang, F., et al., Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol, 1990. 64(7): pp. 3407–16.

    PubMed  CAS  Google Scholar 

  163. Wang, F., et al., Epstein-Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. J Virol, 1991. 65(8): pp. 4101–6.

    PubMed  CAS  Google Scholar 

  164. Gordadze, A.V., et al., EBNA2 amino acids 3 to 30 are required for induction of LMP-1 and immortalization maintenance. J Virol, 2004. 78(8): pp. 3919–29.

    Article  PubMed  CAS  Google Scholar 

  165. Peng, C.W., B. Zhao, and E. Kieff, Four EBNA2 domains are important for EBNALP coactivation. J Virol, 2004. 78(20): pp. 11439–42.

    Article  PubMed  CAS  Google Scholar 

  166. Gordadze, A.V., D. Poston, and P.D. Ling, The EBNA2 polyproline region is dispensable for Epstein-Barr virus-mediated immortalization maintenance. J Virol, 2002. 76(14): pp. 7349–55.

    Article  PubMed  CAS  Google Scholar 

  167. Sjoblom, A., et al., Domains of the Epstein-Barr virus nuclear antigen 2 (EBNA2) involved in the transactivation of the latent membrane protein 1 and the EBNA Cp promoters. J Gen Virol, 1995. 76(Pt 11): pp. 2669–78.

    Article  PubMed  Google Scholar 

  168. Grasser, F.A., et al., Biochemical characterization of Epstein-Barr virus nuclear antigen 2A. J Virol, 1991. 65(7): pp. 3779–88.

    PubMed  CAS  Google Scholar 

  169. Tsui, S. and W.H. Schubach, Epstein-Barr virus nuclear protein 2A forms oligomers in vitro and in vivo through a region required for B-cell transformation. J Virol, 1994. 68(7): pp. 4287–94.

    PubMed  CAS  Google Scholar 

  170. Lee, J.M., et al., EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli. J Virol, 2004. 78(22): pp. 12694–7.

    Article  PubMed  CAS  Google Scholar 

  171. Jehn, B.M., et al., Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol, 1999. 162(2): pp. 635–8.

    PubMed  CAS  Google Scholar 

  172. Lee, J.M., et al., Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis. Proc Natl Acad Sci USA, 2002. 99(18): pp. 11878–83.

    Article  PubMed  CAS  Google Scholar 

  173. Wu, D.Y., et al., Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol, 1996. 70(9): pp. 6020–8.

    PubMed  CAS  Google Scholar 

  174. Voss, M.D., et al., Functional cooperation of Epstein-Barr virus nuclear antigen 2 and the survival motor neuron protein in transactivation of the viral LMP1 promoter. J Virol, 2001. 75(23): pp. 11781–90.

    Article  PubMed  CAS  Google Scholar 

  175. Cohen, J.I., A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci USA, 1992. 89(17): pp. 8030–4.

    Article  PubMed  CAS  Google Scholar 

  176. Tong, J.H., et al., Re: discrete alterations in the BZLF1 promoter in tumor and non-tumor-associated Epstein-Barr virus. J Natl Cancer Inst, 2003. 95(13): pp. 1008–9.

    Article  PubMed  CAS  Google Scholar 

  177. Ling, P.D. and S.D. Hayward, Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk. J Virol, 1995. 69(3): pp. 1944–50.

    PubMed  CAS  Google Scholar 

  178. Farrell, C.J., et al., Inhibition of Epstein-Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc Natl Acad Sci USA, 2004. 101(13): pp. 4625–30.

    Google Scholar 

  179. Cooper, A., et al., EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virus-transformed lymphoblast growth. J Virol, 2003. 77(2): pp. 999–1010.

    Article  PubMed  CAS  Google Scholar 

  180. Hsieh, J.J. and S.D. Hayward, Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science, 1995. 268(5210): pp. 560–3.

    Article  PubMed  CAS  Google Scholar 

  181. Ling, P.D., et al., EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. J Virol, 1994. 68(9): pp. 5375–83.

    PubMed  CAS  Google Scholar 

  182. Ling, P.D., D.R. Rawlins, and S.D. Hayward, The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA, 1993. 90(20): pp. 9237–41.

    Article  PubMed  CAS  Google Scholar 

  183. Laux, G., et al., The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J, 1994. 13(23): pp. 5624–32.

    PubMed  CAS  Google Scholar 

  184. Laux, G., et al., Identification and characterization of an Epstein-Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. J Virol, 1994. 68(11): pp. 6947–58.

    PubMed  CAS  Google Scholar 

  185. Laux, G., A. Economou, and P.J. Farrell, The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J Gen Virol, 1989. 70 (Pt 11): pp. 3079–84.

    Article  PubMed  CAS  Google Scholar 

  186. Laux, G., U.K. Freese, and G.W. Bornkamm, Structure and evolution of two related transcription units of Epstein- Barr virus carrying small tandem repeats. J Virol, 1985. 56(3): pp. 987–95.

    PubMed  CAS  Google Scholar 

  187. Maier, S., et al., Cellular target genes of Epstein-Barr virus nuclear antigen 2. J Virol, 2006. 80(19): pp. 9761–71.

    Article  PubMed  CAS  Google Scholar 

  188. Pages, F., et al., Epstein-Barr virus nuclear antigen 2 induces interleukin-18 receptor expression in B cells. Blood, 2005. 105(4): pp. 1632–9.

    Article  PubMed  CAS  Google Scholar 

  189. Zhou, S., et al., SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol Cell Biol, 2000. 20(7): pp. 2400–10.

    Article  PubMed  CAS  Google Scholar 

  190. Barth, S., et al., Epstein-Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol, 2003. 77(8): pp. 5008–13.

    Article  PubMed  CAS  Google Scholar 

  191. Spender, L.C., et al., Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J Gen Virol, 2006. 87(Pt 10): pp. 2859–67.

    Article  PubMed  CAS  Google Scholar 

  192. Satoh, Y., et al., Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem, 2004. 279(24): pp. 24986–93.

    Article  PubMed  CAS  Google Scholar 

  193. Fuchs, K.P., et al., Mutational analysis of the J recombination signal sequence binding protein (RBP-J)/Epstein-Barr virus nuclear antigen 2 (EBNA2) and RBP-J/Notch interaction. Eur J Biochem, 2001. 268(17): pp. 4639–46.

    Article  PubMed  CAS  Google Scholar 

  194. Sample, J., et al., Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci USA, 1986. 83(14): pp. 5096–100.

    Article  PubMed  CAS  Google Scholar 

  195. Peng, R., et al., Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol, 2000. 74(1): pp. 379–89.

    Article  PubMed  CAS  Google Scholar 

  196. Kawaguchi, Y., et al., Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol, 2000. 74(21): pp. 10104–11.

    Article  PubMed  CAS  Google Scholar 

  197. Yokoyama, A., et al., The conserved domain CR2 of Epstein-Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology, 2001. 279(2): pp. 401–13.

    Article  PubMed  CAS  Google Scholar 

  198. Yokoyama, A., et al., Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol, 2001. 75(11): pp. 5119–28.

    Article  PubMed  CAS  Google Scholar 

  199. Tanaka, M., et al., Conserved region CR2 of Epstein-Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol, 2002. 76(3): pp. 1025–32.

    Article  PubMed  CAS  Google Scholar 

  200. Mannick, J.B., et al., The Epstein-Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J Virol, 1995. 69(12): pp. 8169–72.

    PubMed  CAS  Google Scholar 

  201. Han, I., et al., EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol, 2001. 75(5): pp. 2475–81.

    Google Scholar 

  202. Igarashi, M., et al., Physical interaction of Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J Gen Virol, 2003. 84(Pt 2): pp. 319–27.

    Article  PubMed  CAS  Google Scholar 

  203. Kitay, M.K. and D.T. Rowe, Protein-protein interactions between Epstein-Barr virus nuclear antigen- LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology, 1996. 220(1): pp. 91–9.

    Article  PubMed  CAS  Google Scholar 

  204. Orstavik, S., et al., Identification, cloning and characterization of a novel nuclear protein, HA95, homologous to A-kinase anchoring protein 95. Biol Cell, 2000. 92(1): pp. 27–37.

    Article  PubMed  CAS  Google Scholar 

  205. Han, I., et al., Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein-Barr virus nuclear proteins. Mol Cell Biol, 2002. 22(7): pp. 2136–46.

    Article  PubMed  CAS  Google Scholar 

  206. Yang, J.P., et al., Mapping the functional domains of HAP95, a protein that binds RNA helicase A and activates the constitutive transport element of type D retroviruses. J Biol Chem, 2001. 276(33): pp. 30694–700.

    Article  PubMed  CAS  Google Scholar 

  207. Jiang, W.Q., et al., Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res, 1991. 197(2): pp. 314–8.

    Article  PubMed  CAS  Google Scholar 

  208. Kashuba, E., et al., EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells. Int J Cancer, 2003. 105(5): pp. 644–53.

    Article  PubMed  CAS  Google Scholar 

  209. Kashuba, E., et al., Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein. Exp Cell Res, 2005. 303(1): pp. 47–55.

    PubMed  CAS  Google Scholar 

  210. Szekely, L., et al., EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA, 1993. 90(12): pp. 5455–9.

    Article  PubMed  CAS  Google Scholar 

  211. Szekely, L., et al., The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J Virol, 1996. 70(4): pp. 2562–8.

    PubMed  CAS  Google Scholar 

  212. Pokrovskaja, K., et al., Proteasome inhibitor induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5. J Gen Virol, 2001. 82(Pt 2): pp. 345–58.

    PubMed  CAS  Google Scholar 

  213. Hennessy, K., S. Fennewald, and E. Kieff, A third viral nuclear protein in lymphoblasts immortalized by Epstein- Barr virus. Proc Natl Acad Sci USA, 1985. 82(17): pp. 5944–8.

    Article  PubMed  CAS  Google Scholar 

  214. Hennessy, K., et al., Definitive identification of a member of the Epstein-Barr virus nuclear protein 3 family. Proc Natl Acad Sci USA, 1986. 83(15): pp. 5693–7.

    Article  PubMed  CAS  Google Scholar 

  215. Petti, L. and E. Kieff, A sixth Epstein-Barr virus nuclear protein (EBNA3B) is expressed in latently infected growth-transformed lymphocytes. J Virol, 1988. 62(6): pp. 2173–8.

    PubMed  CAS  Google Scholar 

  216. Kieff, E. and A.B. Rickinson, Epstein-Barr Virus and Its Replication, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2001, Lippincott Williams and WIlkins: Philadelphia. pp. 2511–74.

    Google Scholar 

  217. Rivailler, P., et al., Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood, 2004. 104(5): pp. 1482–9.

    Article  PubMed  CAS  Google Scholar 

  218. Zhao, B., D.R. Marshall, and C.E. Sample, A conserved domain of the Epstein-Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa. J Virol, 1996. 70(7): pp. 4228–36.

    PubMed  CAS  Google Scholar 

  219. Chen, A., et al., EBNA-3B- and EBNA-3C-regulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol, 2006. 80(20): pp. 10139–50.

    Article  PubMed  CAS  Google Scholar 

  220. Tomkinson, B. and E. Kieff, Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. J Virol, 1992. 66(5): pp. 2893–903.

    PubMed  CAS  Google Scholar 

  221. Chen, A., et al., Epstein-Barr virus with the latent infection nuclear antigen 3B completely deleted is still competent for B-cell growth transformation in vitro. J Virol, 2005. 79(7): pp. 4506–9.

    Article  PubMed  CAS  Google Scholar 

  222. Murray, R.J., et al., Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med, 1992. 176(1): pp. 157–68.

    Article  PubMed  CAS  Google Scholar 

  223. Khanna, R., et al., Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med, 1992. 176(1): pp. 169–76.

    Article  PubMed  CAS  Google Scholar 

  224. Gavioli, R., et al., Recognition of the Epstein-Barr virus-encoded nuclear antigens EBNA-4 and EBNA-6 by HLA-A11-restricted cytotoxic T lymphocytes: implications for down-regulation of HLA-A11 in Burkitt lymphoma. Proc Natl Acad Sci USA, 1992. 89(13): pp. 5862–6.

    Article  PubMed  CAS  Google Scholar 

  225. Gottschalk, S., et al., An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 2001. 97(4): pp. 835–43.

    Article  PubMed  CAS  Google Scholar 

  226. Robertson, E.S., T. Ooka, and E.D. Kieff, Epstein-Barr virus vectors for gene delivery to B lymphocytes. Proc Natl Acad Sci USA, 1996. 93(21): pp. 11334–40.

    Article  PubMed  CAS  Google Scholar 

  227. Kempkes, B., et al., Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein-Barr virus DNA. J Virol, 1995. 69(1): pp. 231–8.

    PubMed  CAS  Google Scholar 

  228. Bourillot, P.Y., et al., Transcriptional repression by the Epstein-Barr virus EBNA3A protein tethered to DNA does not require RBP-Jkappa. J Gen Virol, 1998. 79(Pt 2): pp. 363–70.

    PubMed  CAS  Google Scholar 

  229. Cotter, M.A., 2nd and E.S. Robertson, Modulation of histone acetyltransferase activity through interaction of epstein-barr nuclear antigen 3C with prothymosin alpha. Mol Cell Biol, 2000. 20(15): pp. 5722–35.

    Article  PubMed  CAS  Google Scholar 

  230. Oswald, F., et al., RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol, 2005. 25(23): pp. 10379–90.

    Article  PubMed  CAS  Google Scholar 

  231. Hsieh, J.J., et al., CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci USA, 1999. 96(1): pp. 23–8.

    Article  PubMed  CAS  Google Scholar 

  232. Webb, P., et al., ERbeta Binds N-CoR in the presence of Estrogens via an LXXLL-like motif in the N-CoR C-terminus. Nucl Recept, 2003. 1(1): p. 4.

    Article  PubMed  Google Scholar 

  233. Savkur, R.S. and T.P. Burris, The coactivator LXXLL nuclear receptor recognition motif. J Pept Res, 2004. 63(3): pp. 207–12.

    Article  PubMed  CAS  Google Scholar 

  234. Kashuba, E., et al., Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen. Oncogene, 2000. 19(14): pp. 1801–6.

    Article  PubMed  CAS  Google Scholar 

  235. Kashuba, E., et al., Epstein-Barr virus encoded nuclear protein EBNA-3 binds a novel human uridine kinase/uracil phosphoribosyltransferase. BMC Cell Biol, 2002. 3(1): p. 23.

    Article  PubMed  Google Scholar 

  236. Kashuba, E., et al., Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex. J Hum Virol, 1999. 2(1): pp. 33–7.

    PubMed  CAS  Google Scholar 

  237. Calderwood, M.A., et al., Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA, 2007. 104(18): pp. 7606–11.

    Article  PubMed  CAS  Google Scholar 

  238. West, M., et al., Functional mapping of the DNA binding domain of bovine papillomavirus E1 protein. J Virol, 2001. 75(24): pp. 11948–60.

    Article  PubMed  CAS  Google Scholar 

  239. Subramanian, C., M.A. Cotter, 2nd, and E.S. Robertson, Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med, 2001. 7(3): pp. 350–5.

    Article  PubMed  CAS  Google Scholar 

  240. Subramanian, C., J.S. Knight, and E.S. Robertson, The Epstein Barr nuclear antigen EBNA3C regulates transcription, cell transformation and cell migration. Front Biosci, 2002. 7: pp. d704–16.

    Article  PubMed  CAS  Google Scholar 

  241. Krauer, K.G., et al., The Epstein-Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein. Virology, 2004. 318(1): pp. 280–94.

    Article  PubMed  CAS  Google Scholar 

  242. Grundhoff, A.T., et al., Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C. J Biol Chem, 1999. 274(27): pp. 19136–44.

    Article  PubMed  CAS  Google Scholar 

  243. Allday, M.J. and P.J. Farrell, Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol, 1994. 68(6): pp. 3491–8.

    PubMed  CAS  Google Scholar 

  244. Zancai, P., et al., Retinoic acid stabilizes p27Kip1 in EBV-immortalized lymphoblastoid B cell lines through enhanced proteasome-dependent degradation of the p45Skp2 and Cks1 proteins. Oncogene, 2005. 24(15): pp. 2483–94.

    Article  PubMed  CAS  Google Scholar 

  245. Sung, N.S., et al., EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus. J Virol, 1991. 65(5): pp. 2164–9.

    PubMed  CAS  Google Scholar 

  246. Woisetschlaeger, M., et al., Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc Natl Acad Sci USA, 1991. 88(9): pp. 3942–6.

    Article  PubMed  CAS  Google Scholar 

  247. Puglielli, M.T., N. Desai, and S.H. Speck, Regulation of EBNA gene transcription in lymphoblastoid cell lines: characterization of sequences downstream of BCR2 (Cp). J Virol, 1997. 71(1): pp. 120–8.

    PubMed  CAS  Google Scholar 

  248. Rooney, C.M., et al., Host cell and EBNA-2 regulation of Epstein-Barr virus latent-cycle promoter activity in B lymphocytes. J Virol, 1992. 66(1): pp. 496–504.

    PubMed  CAS  Google Scholar 

  249. Johannsen, E., et al., EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. J Virol, 1996. 70(6): pp. 4179–83.

    PubMed  CAS  Google Scholar 

  250. Le Roux, A., et al., The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology, 1994. 205(2): pp. 596–602.

    Article  PubMed  Google Scholar 

  251. Sugden, B., K. Marsh, and J. Yates, A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol Cell Biol, 1985. 5(2): pp. 410–3.

    PubMed  CAS  Google Scholar 

  252. Lupton, S. and A.J. Levine, Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol Cell Biol, 1985. 5(10): pp. 2533–42.

    PubMed  CAS  Google Scholar 

  253. Jones, C.H., S.D. Hayward, and D.R. Rawlins, Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. J Virol, 1989. 63(1): pp. 101–10.

    PubMed  CAS  Google Scholar 

  254. Deng, Z., et al., Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell, 2002. 9(3): pp. 493–503.

    Article  PubMed  CAS  Google Scholar 

  255. Deng, Z., et al., Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. J Virol, 2005. 79(8): pp. 4640–50.

    Article  PubMed  CAS  Google Scholar 

  256. Sugden, B. and N. Warren, Plasmid origin of replication of Epstein-Barr virus, oriP, does not limit replication in cis. Mol Biol Med, 1988. 5(2): pp. 85–94.

    PubMed  CAS  Google Scholar 

  257. Kirchmaier, A.L. and B. Sugden, Rep*: a viral element that can partially replace the origin of plasmid DNA synthesis of Epstein-Barr virus. J Virol, 1998. 72(6): pp. 4657–66.

    PubMed  CAS  Google Scholar 

  258. Aiyar, A., C. Tyree, and B. Sugden, The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J, 1998. 17(21): pp. 6394–403.

    Article  PubMed  CAS  Google Scholar 

  259. Shan, L., et al., An OriP/EBNA-1-based baculovirus vector with prolonged and enhanced transgene expression. J Gene Med, 2006. 8(12): pp. 1400–6.

    Article  PubMed  CAS  Google Scholar 

  260. Schaefer, B.C., J.L. Strominger, and S.H. Speck, Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc Natl Acad Sci USA, 1995. 92(23): pp. 10565–9.

    Article  PubMed  CAS  Google Scholar 

  261. Tsai, C.N., S.T. Liu, and Y.S. Chang, Identification of a novel promoter located within the Bam HI Q region of the Epstein-Barr virus genome for the EBNA 1 gene. DNA Cell Biol, 1995. 14(9): pp. 767–76.

    Article  PubMed  CAS  Google Scholar 

  262. Nonkwelo, C., et al., Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J Virol, 1996. 70(1): pp. 623–7.

    PubMed  CAS  Google Scholar 

  263. Hampar, B., et al., Replication of the resident repressed Epstein-Barr virus genome during the early S phase (S-1 period) of nonproducer Raji cells. Proc Natl Acad Sci USA, 1974. 71(3): pp. 631–3.

    Article  PubMed  CAS  Google Scholar 

  264. Adams, A., Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol, 1987. 61(5): pp. 1743–6.

    PubMed  CAS  Google Scholar 

  265. Lindahl, T., et al., Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol, 1976. 102(3): pp. 511–30.

    Article  PubMed  CAS  Google Scholar 

  266. Nonoyama, M. and J.S. Pagano, Replication of viral deoxyribonucleic acid and breakdown of cellular deoxyribonucleic acid in Epstein-Barr virus infection. J Virol, 1972. 9(4): pp. 714–6.

    PubMed  CAS  Google Scholar 

  267. Yates, J.L. and N. Guan, Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol, 1991. 65(1): pp. 483–8.

    PubMed  CAS  Google Scholar 

  268. Kirchmaier, A.L. and B. Sugden, Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol, 1995. 69(2): pp. 1280–3.

    PubMed  CAS  Google Scholar 

  269. Hudson, G.S., T.J. Gibson, and B.G. Barrell, The BamHI F region of the B95-8 Epstein-Barr virus genome. Virology, 1985. 147(1): pp. 99–109.

    Article  PubMed  CAS  Google Scholar 

  270. Reisman, D., J. Yates, and B. Sugden, A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol, 1985. 5(8): pp. 1822–32.

    PubMed  CAS  Google Scholar 

  271. Sugden, B. and N. Warren, A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol, 1989. 63(6): pp. 2644–9.

    PubMed  CAS  Google Scholar 

  272. Krysan, P.J., S.B. Haase, and M.P. Calos, Isolation of human sequences that replicate autonomously in human cells. Mol Cell Biol, 1989. 9(3): pp. 1026–33.

    PubMed  CAS  Google Scholar 

  273. Middleton, T. and B. Sugden, Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol, 1994. 68(6): pp. 4067–71.

    PubMed  CAS  Google Scholar 

  274. Krysan, P.J. and M.P. Calos, Epstein-Barr virus-based vectors that replicate in rodent cells. Gene, 1993. 136(1–2): pp. 137–43.

    Article  PubMed  CAS  Google Scholar 

  275. Wysokenski, D.A. and J.L. Yates, Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J Virol, 1989. 63(6): pp. 2657–66.

    PubMed  CAS  Google Scholar 

  276. Gahn, T.A. and B. Sugden, An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein-Barr virus LMP gene. J Virol, 1995. 69(4): pp. 2633–6.

    PubMed  CAS  Google Scholar 

  277. Puglielli, M.T., M. Woisetschlaeger, and S.H. Speck, oriP is essential for EBNA gene promoter activity in Epstein-Barr virus- immortalized lymphoblastoid cell lines. J Virol, 1996. 70(9): pp. 5758–68.

    PubMed  CAS  Google Scholar 

  278. Gahn, T.A. and C.L. Schildkraut, The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell, 1989. 58(3): pp. 527–35.

    Article  PubMed  CAS  Google Scholar 

  279. Yates, J.L., S.M. Camiolo, and J.M. Bashaw, The minimal replicator of Epstein-Barr virus oriP. J Virol, 2000. 74(10): pp. 4512–22.

    Article  PubMed  CAS  Google Scholar 

  280. Chittenden, T., S. Lupton, and A.J. Levine, Functional limits of oriP, the Epstein-Barr virus plasmid origin of replication. J Virol, 1989. 63(7): pp. 3016–25.

    PubMed  CAS  Google Scholar 

  281. Bashaw, J.M. and J.L. Yates, Replication from oriP of Epstein-Barr virus requires exact spacing of two bound dimers of EBNA1 which bend DNA. J Virol, 2001. 75(22): pp. 10603–11.

    Article  PubMed  CAS  Google Scholar 

  282. Summers, H., et al., Cooperative assembly of EBNA1 on the Epstein-Barr virus latent origin of replication. J Virol, 1996. 70(2): pp. 1228–31.

    PubMed  CAS  Google Scholar 

  283. Avolio-Hunter, T.M., P.N. Lewis, and L. Frappier, Epstein-Barr nuclear antigen 1 binds and destabilizes nucleosomes at the viral origin of latent DNA replication. Nucleic Acids Res, 2001. 29(17): pp. 3520–8.

    Article  PubMed  CAS  Google Scholar 

  284. Frappier, L. and M. O'Donnell, Epstein-Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein-Barr virus. Proc Natl Acad Sci USA, 1991. 88(23): pp. 10875–9.

    Article  PubMed  CAS  Google Scholar 

  285. Avolio-Hunter, T.M. and L. Frappier, EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication. Virology, 2003. 315(2): pp. 398–408.

    Article  PubMed  CAS  Google Scholar 

  286. Baer, R., et al., DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, 1984. 310(5974): pp. 207–11.

    Article  PubMed  CAS  Google Scholar 

  287. Yates, J.L. and S.M. Camiolo, Dissection of DNA replication and enhancer activation function of Epstein-Barr virus nuclear antigen 1. Cancer Cells, 1988. 6: pp. 197–205.

    CAS  Google Scholar 

  288. Ambinder, R.F., et al., Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J Virol, 1991. 65(3): pp. 1466–78.

    PubMed  CAS  Google Scholar 

  289. Shah, W.A., et al., Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions. J Virol, 1992. 66(6): pp. 3355–62.

    PubMed  CAS  Google Scholar 

  290. Goldsmith, K., L. Bendell, and L. Frappier, Identification of EBNA1 amino acid sequences required for the interaction of the functional elements of the Epstein-Barr virus latent origin of DNA replication. J Virol, 1993. 67(6): pp. 3418–26.

    PubMed  CAS  Google Scholar 

  291. Frappier, L., K. Goldsmith, and L. Bendell, Stabilization of the EBNA1 protein on the Epstein-Barr virus latent origin of DNA replication by a DNA looping mechanism. J Biol Chem, 1994. 269(2): pp. 1057–62.

    PubMed  CAS  Google Scholar 

  292. Bochkarev, A., et al., Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein EBNA 1. Cell, 1995. 83(1): pp. 39–46.

    Article  PubMed  CAS  Google Scholar 

  293. Heller, M., et al., Repeat arrays in cellular DNA related to the Epstein-Barr virus IR3 repeat. Mol Cell Biol, 1985. 5(3): pp. 457–65.

    PubMed  CAS  Google Scholar 

  294. Heller, M., et al., The IR3 repeat in Epstein-Barr virus DNA has homology to cell DNA, encodes part of a messenger RNA in EBV transformed cells but does not mediate integration of Epstein-Barr virus DNA, in Nasopharyngeal carcinoma: current concepts, U. Prasad and et. al, Editors. 1983, Kuala Lumpur: University of Malaya: Kuala Lumpur. pp. 177–202.

    Google Scholar 

  295. Heller, M., V. van Santen, and E. Kieff, Simple repeat sequence in Epstein-Barr virus DNA is transcribed in latent and productive infections. J Virol, 1982. 44(1): pp. 311–20.

    PubMed  CAS  Google Scholar 

  296. Yin, Y., B. Manoury, and R. Fahraeus, Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science, 2003. 301(5638): pp. 1371–4.

    Article  PubMed  CAS  Google Scholar 

  297. Trivedi, P., et al., The epstein-Barr-virus-encoded membrane protein LMP but not the nuclear antigen EBNA-1 induces rejection of transfected murine mammary carcinoma cells. Int J Cancer, 1991. 48(5): pp. 794–800.

    Article  PubMed  CAS  Google Scholar 

  298. Levitskaya, J., et al., Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature, 1995. 375(6533): pp. 685–8.

    Article  PubMed  CAS  Google Scholar 

  299. Levitskaya, J., et al., Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA, 1997. 94(23): pp. 12616–21.

    Article  PubMed  CAS  Google Scholar 

  300. Sharipo, A., et al., A minimal glycine-alanine repeat prevents the interaction of ubiquitinated I kappaB alpha with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med, 1998. 4(8): pp. 939–44.

    Article  PubMed  CAS  Google Scholar 

  301. Dantuma, N.P., et al., Inhibition of proteasomal degradation by the gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci USA, 2000. 97(15): pp. 8381–5.

    Article  PubMed  CAS  Google Scholar 

  302. Dantuma, N.P., A. Sharipo, and M.G. Masucci, Avoiding proteasomal processing: the case of EBNA1. Curr Top Microbiol Immunol, 2002. 269: pp. 23–36.

    Article  PubMed  CAS  Google Scholar 

  303. Fogg, M.H., et al., The CD8+ T-cell response to an Epstein-Barr virus-related gammaherpesvirus infecting rhesus macaques provides evidence for immune evasion by the EBNA-1 homologue. J Virol, 2005. 79(20): pp. 12681–91.

    Article  PubMed  CAS  Google Scholar 

  304. Marechal, V., et al., Mapping EBNA-1 domains involved in binding to metaphase chromosomes. J Virol, 1999. 73(5): pp. 4385–92.

    PubMed  CAS  Google Scholar 

  305. Sears, J., et al., Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. J Virol, 2003. 77(21): pp. 11767–80.

    Article  PubMed  CAS  Google Scholar 

  306. Wu, H., P. Kapoor, and L. Frappier, Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. J Virol, 2002. 76(5): pp. 2480–90.

    Article  PubMed  CAS  Google Scholar 

  307. Mackey, D. and B. Sugden, The linking regions of EBNA1 are essential for its support of replication and transcription. Mol Cell Biol, 1999. 19(5): pp. 3349–59.

    PubMed  CAS  Google Scholar 

  308. Wu, H., D.F. Ceccarelli, and L. Frappier, The DNA segregation mechanism of Epstein-Barr virus nuclear antigen 1. EMBO Rep, 2000. 1(2): pp. 140–4.

    Article  PubMed  CAS  Google Scholar 

  309. Shire, K., et al., EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol, 1999. 73(4): pp. 2587–95.

    PubMed  CAS  Google Scholar 

  310. Fischer, N., et al., Epstein-Barr virus nuclear antigen 1 forms a complex with the nuclear transporter karyopherin alpha2. J Biol Chem, 1997. 272(7): pp. 3999–4005.

    Article  PubMed  CAS  Google Scholar 

  311. Holowaty, M.N., et al., Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem, 2003. 278(32): pp. 29987–94.

    Article  PubMed  CAS  Google Scholar 

  312. Kim, A.L., et al., An imperfect correlation between DNA replication activity of Epstein- Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin alpha. Virology, 1997. 239(2): pp. 340–51.

    Article  PubMed  CAS  Google Scholar 

  313. Van Scoy, S., et al., Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology, 2000. 275(1): pp. 145–57.

    Article  PubMed  CAS  Google Scholar 

  314. Wang, Y., et al., P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus. Virology, 1997. 236(1): pp. 18–29.

    Article  PubMed  CAS  Google Scholar 

  315. Laine, A. and L. Frappier, Identification of Epstein-Barr virus nuclear antigen 1 protein domains that direct interactions at a distance between DNA-bound proteins. J Biol Chem, 1995. 270(52): pp. 30914–8.

    Article  PubMed  CAS  Google Scholar 

  316. Mackey, D., T. Middleton, and B. Sugden, Multiple regions within EBNA1 can link DNAs. J Virol, 1995. 69(10): pp. 6199–208.

    PubMed  CAS  Google Scholar 

  317. Mackey, D. and B. Sugden, Studies on the mechanism of DNA linking by Epstein-Barr virus nuclear antigen 1. J Biol Chem, 1997. 272(47): pp. 29873–9.

    Article  PubMed  CAS  Google Scholar 

  318. Wilkinson, A.H., et al., Increased frequency of posttransplant lymphomas in patients treated with cyclosporine, azathioprine, and prednisone. Transplantation, 1989. 47(2): pp. 293–6.

    Article  PubMed  CAS  Google Scholar 

  319. Middleton, T. and B. Sugden, EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J Virol, 1992. 66(1): pp. 489–95.

    PubMed  CAS  Google Scholar 

  320. Kirchmaier, A.L. and B. Sugden, Dominant-negative inhibitors of EBNA-1 of Epstein-Barr virus. J Virol, 1997. 71(3): pp. 1766–75.

    PubMed  CAS  Google Scholar 

  321. Chaudhuri, B., et al., Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci USA, 2001. 98(18): pp. 10085–9.

    Article  PubMed  CAS  Google Scholar 

  322. Dhar, S.K., et al., Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell, 2001. 106(3): pp. 287–96.

    Article  PubMed  CAS  Google Scholar 

  323. Schepers, A., et al., Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J, 2001. 20(16): pp. 4588–602.

    Article  PubMed  CAS  Google Scholar 

  324. Kang, M.S., S.C. Hung, and E. Kieff, Epstein-Barr virus nuclear antigen 1 activates transcription from episomal but not integrated DNA and does not alter lymphocyte growth. Proc Natl Acad Sci USA, 2001. 98(26): pp. 15233–8.

    Article  PubMed  CAS  Google Scholar 

  325. Yin, Q. and E.K. Flemington, siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology, 2006. 346(2): pp. 385–93.

    Article  PubMed  CAS  Google Scholar 

  326. Nasimuzzaman, M., et al., Eradication of epstein-barr virus episome and associated inhibition of infected tumor cell growth by adenovirus vector-mediated transduction of dominant-negative EBNA1. Mol Ther, 2005. 11(4): pp. 578–90.

    Article  PubMed  CAS  Google Scholar 

  327. Ceccarelli, D.F. and L. Frappier, Functional analyses of the EBNA1 origin DNA binding protein of Epstein-Barr virus. J Virol, 2000. 74(11): pp. 4939–48.

    Article  PubMed  CAS  Google Scholar 

  328. Kitamura, R., et al., Nuclear import of Epstein-Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol, 2006. 80(4): pp. 1979–91.

    Article  PubMed  CAS  Google Scholar 

  329. Saridakis, V., et al., Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell, 2005. 18(1): pp. 25–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of their research by the National Cancer Institute and National Institutes of Health of the USPHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliott Kieff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Johannsen, E., Calderwood, M., Kang, MS., Zhao, B., Portal, D., Kieff, E. (2009). Epstein–Barr Virus Latent Infection Nuclear Proteins: Genome Maintenance and Regulation of Lymphocyte Cell Growth and Survival. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_14

Download citation

Publish with us

Policies and ethics