Skip to main content

Among other functions, the neurological and neurovestibular systems serve to support positional awareness and motor control. Because gravitational cues and visual references play a role in this support, it is not surprising that the spaceflight environment profoundly influences static and dynamic positional sense and subsequent motor function. Human adaptation to this unique environment is being investigated to understand how performance may be optimized in every flight phase. Proper neurovestibular function ensures spaceflight crew safety in the complex and unfamiliar visual and motion milieu of microgravity and because of reliance on mechanical display information, enhances ability to operate a vehicle safely.

The neurovestibular system creates a consistent, conscious map of head and body orientation as well as an internal orientation reference that will correct for absent or erroneous visual and somatosensory systems. It primarily stabilizes the eyes (the visual system) by means of (1) the vestibular ocular reflex, which is related to maintaining a stable world during movement; and (2) the vestibular spinal reflex, which preserves body alignment and establishes an appropriate relationship between the head and body. The character of the vestibular and visual systems’ interaction depends on a specific task or relevant operational requirement. For example, whereas a crewmember depends on the visual vestibular ocular reflex to track a stationary target while turning, that same individual suppresses the vestibular ocular reflex when tracking a headfixed target, such as a head-mounted display, while turning. A person’s pursuit system (slow eye movement) is used to track and identify moving objects, and the saccade system (fast eye movement) is necessary to acquire objects in the peripheral visual field and scan instruments. Visually induced optokinetic nystagmus occurs when a person views a moving background. This adds to the optical data that generates a sense of speed over terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clement G, Vieville T, Lestienne F, Berthoz A. Modifications of the gain asymmetry and beating field of vertical optokinetic nystagmus in microgravity. Neurosci Lett 1986; 63:271-274.

    Article  PubMed  CAS  Google Scholar 

  2. Clement G, Wood SJ, Reschke MF. Effects of microgravity on the interaction of vestibular and optokinetic nystagmus in the vertical plane. Aviat Space Environ Med 1992; 63:778-784.

    PubMed  CAS  Google Scholar 

  3. Clement G. Alteration of eye movements and motion perception in microgravity. Brain Res Rev 1998; 28:161-172.

    Article  PubMed  CAS  Google Scholar 

  4. Young LR. Vestibular reactions to spaceflight: Human factors issues. Aviat Space Environ Med 2000; 71(Suppl.):A100-A104.

    PubMed  CAS  Google Scholar 

  5. Reschke MF, Bloomberg JJ, Harm DL, Paloski WH. Spaceflight and neurovestibular adaptation. J Clin Pharmacol 1994; 34: 609-617.

    PubMed  CAS  Google Scholar 

  6. Black FO, Paloski WH. Computerized dynamic posturography: What have we learned from space? Otolaryngol Head Neck Surg 1998; 118:S45-S51.

    Article  PubMed  CAS  Google Scholar 

  7. McCluskey R, Clark JB, Stepaniak P. Correlation of space shut-tle landing performance with cardiovascular and neurovestibular dysfunction resulting from space flight. In: Human Systems 2001: The International Conference on Technologies for Human Factors and Psycho-Social Adaptation in Space and Terrestrial Applications. Houston: NASA; 2001.

    Google Scholar 

  8. Merfeld DM. Effect of spaceflight on the ability to sense and control roll tilt: Human neurovestibular experiments on Spacelab Life Sciences 2. J Appl Physiol 1996; 81:50-57.

    PubMed  CAS  Google Scholar 

  9. Bacal K, Billica R, Bishop S. Neurovestibular symptoms follow-ing space flight. J Vestib Res 2004; 13:93-102.

    Google Scholar 

  10. Graybiel A, Miller EF, Homick JL. Experiment M131, Human Vestibular Function. In Johnston RS, Dietlein LF (eds.), Biomed-ical results from Skylab (NASA SP-377); 1977:74-103.

    Google Scholar 

  11. Homick JL, Miller EF, II. Apollo flight crew vestibular assess-ment. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedi-cal Results of Apollo. Washington, DC: US Government Printing Office; 1975:323-340. NASA SP-368.

    Google Scholar 

  12. Guedry FE. Relations between vestibular nystagmus and visual performance. Aerosp Med 1968; 39:570-579.

    PubMed  Google Scholar 

  13. Grose VL. Deleterious effect on astronaut capability to vestibu-lar ocular disturbance during spacecraft and roll acceleration. Aerosp Med 1967; 38:1138-1144.

    PubMed  CAS  Google Scholar 

  14. Harm DL, Parker DE. Perceived self orientation and self motion in microgravity, after landing and during Preflight Adaptation Training. J Vestib Res 1993; 3:297-301.

    PubMed  CAS  Google Scholar 

  15. Howard IP. Human Visual Orientation. Toronto: Wiley; 1982.

    Google Scholar 

  16. Howard IP, Childerson L. The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception 1994; 23:753-762.

    Article  PubMed  CAS  Google Scholar 

  17. Howard IP. Visual reorientation illusions as a function of age. Aviat Space Environ Med 2000; 71(Suppl.):A87-A91.

    PubMed  CAS  Google Scholar 

  18. Harm DL, Reschke MF, Parker DE. Visual-vestibular integra-tion: Motion perception reporting. In: Sawin CF, Taylor GR, Smith WL (eds.), Extended Duration Orbiter Medical Project (Vol. NASA/SP-1999-534, pp. 5.2-1-5.2-12). Houston: NASA Johnson Space Center, 1999.

    Google Scholar 

  19. Held R, Dichgans J, Bauer J. Characteristics of moving visual areas influencing spatial orientation. Science 1975; 141: 722-723.

    Article  Google Scholar 

  20. Muller C, Wiest G, Kornilova L, Deecke L. Visuo-vestibular interaction in determination of orientation behavior in weight-lessness. Wien Med Wochenschr 1993; 143:630-632.

    PubMed  CAS  Google Scholar 

  21. Reschke MF, Bloomberg JJ, Paloski WH, Harm DL, Parker DE. Neurophysiologic aspects: Sensory and sensorimotor function. In: Nicogossian AE, Huntoon CL, Pool SL (eds.), Space Physiology and Medicine, 3rd edn. Philadelphia: Lea & Febiger; 1994:261-285.

    Google Scholar 

  22. Benson AJ, Kass JR, Vogel H. European vestibular experiments on the Spacelab-1 mission: 4. Thresholds of perception of whole-body linear oscillation. Exp Brain Res 1986; 64:264-271.

    PubMed  CAS  Google Scholar 

  23. Reschke MF, Anderson DJ, Homick JL. Vestibulospinal response modification as determined with the H reflex during the Spacelab 1 flight. Ex Brain Res 1986; 64:367-379.

    Article  CAS  Google Scholar 

  24. Bikhazi P, Jackson C, Ruckenstein MJ. Efficacy of antimigrain-ous therapy in the treatment of migraine associated dizziness. Am J Otol 1997; 18:350-354.

    PubMed  CAS  Google Scholar 

  25. Young LR, Oman CM, Merfeld D, Watt DGD, Roy S, Deluca C, et al. Spatial orientation and posture during and following weightlessness: Human experiments on Spacelab-Life-Sciences-1. J Vestib Res 1993; 3:231-240.

    PubMed  CAS  Google Scholar 

  26. Morgan C. NASA-5 Mike Foale: Collision and Recovery. In: Shuttle—Mir NASA SP-2001-4225 NASA Johnson Space Cen-ter, Houston, Texas, 2001, pp. 104-117, and accompanying CD ROM: Foale CM. NASA Mir Oral History. Session 1, 16 June 1998; Session 2, 7 July 1998; Session 3, 31 July 1998.

    Google Scholar 

  27. BBC Television HORIZON. Mir Mortals segment, April 23, 1998, Random Postproductions, 1 Golden Square, London.

    Google Scholar 

  28. Oman CM, Lichtenberg BK, Money KE. Space motion sick-ness monitoring experiment: Spacelab 1. In: Crampton GH (ed.), Motion and Space Sickness. Boca Raton, FL: CRC Press; 1990:217-246.

    Google Scholar 

  29. Clark JB, Rupert AH. Spatial disorientation and dysfunction of orientation/equilibrium reflexes: Clinical evaluation and aero-medical considerations. Aviat Space Environ Med 1992; 63: 914-918.

    PubMed  CAS  Google Scholar 

  30. Vieville T, Clement G, Lestienne F, Berthoz A. Adaptive modifi-cations of the optokinetic vestibulo-ocular reflex in microgravity. In: Keller EL, Zee DS (eds.), Adaptive Processes in Visual and Oculomotor Systems. New York: Pergamon Press; 1986:111-120.

    Google Scholar 

  31. Uri JJ, Linder BJ, Moore TP, Pool SL, Thornton WE. Sacca-dic Eye Movements during Space Flight. NASA TM-100475, NASA, Washington, DC; 1989.

    Google Scholar 

  32. Kornilova LN, Goncharenko AM, Godo G, Elkan K, Grigorova V, et al. Pathogenesis of Sensory Disorders in Microgravity. Physiologist 1991; 34:S36-S39.

    PubMed  CAS  Google Scholar 

  33. Thornton WE, Uri JJ, Moore TP, Pool SL. Studies of the hori-zontal Vestibulo-ocular reflex in spaceflight. Arch Otolaryngol 1989; 115:943-949.

    CAS  Google Scholar 

  34. Kornilova LN, Grigorova V, Bodo G. Vestibular function and sen-sory interaction in space flight. J Vestib Res 1993; 3:219-230.

    PubMed  CAS  Google Scholar 

  35. Kornilova LN, Grigorova V, Bodo F, Chernobyl’skii LM. Neuro-physiological patterns of vestibular adaptation to microgravity. Aviakosm Ekolog Med 1995; 29:23-30.

    PubMed  CAS  Google Scholar 

  36. Mergner T, Rosemeier T. Interaction of vestibular, somatosen-sory and visual signals for postural control and motion percep-tion under terrestrial and microgravity conditions—a conceptual model. Brain Res Rev 1998; 28:118-135.

    Article  PubMed  CAS  Google Scholar 

  37. Von Baumgarten R, Benson A, Berthoz A, Brandt T, Brand U, et al. Effects of rectilinear acceleration and optokinetic and caloric stimulations in space. Science 1984; 225:208-212.

    Article  PubMed  CAS  Google Scholar 

  38. Oman CM, Balkwill MD. Horizontal angular VOR, nystagmus dumping, and sensation duration in Spacelab SLS-1 crew mem-bers. J Vestib Res 1993; 3:315-330.

    PubMed  CAS  Google Scholar 

  39. Clement G, Lestienne F. Adaptive modifications of postural attitude in conditions of weightlessness. Exp Brain Res 1988; 72:381-389.

    Article  PubMed  CAS  Google Scholar 

  40. Lackner JR, Levine MS. Changes in apparent body orientation and sensory localization induced by vibration of postural mus-cles: Vibratory myesthetic illusions. Aviat Space Environ Med 1979; 50:346-354.

    PubMed  CAS  Google Scholar 

  41. Grigoriev AI, Yegorov AD (eds.), Preliminary medical results of the 180 day flight of prime crew 6 on Space Station Mir. Pre-sented at 4th meeting of the US USSR Joint Working Group on Space Biology and Medicine. San Francisco, CA; 16-20 Sept 1990.

    Google Scholar 

  42. Homick JL, Reschke MF. Postural equilibrium following weight-less space flight. Acta Oto-Laryngol 1977; 83:455-464.

    Article  CAS  Google Scholar 

  43. Kerwin JP. Skylab 2 Crew Observations and Summary. In: John-ston RS, Dietlein LF (eds.), The Proceedings of the Skylab Life Sciences Symposium, Vol. 1, Washington, DC: National Aero-nautics and Space Administration; 1974:55-59.

    Google Scholar 

  44. Bryanov II, Yemel’yanov MD, Matveyev AD, Mantsev EI, Tara-sov IK, Yakovleva IYa, Kakurin LI, Kozerenko OP, Myasnikov VI, Yeremin AV, Pervushin VI, Cherepakhin MA, Purakhin YuN, Rudometkin NM, Chekidra IV. Characteristics of statokinetic reactions. In: Gazenko OG, Kakurin LI, Kuznetsov AG (eds.), Space Flights in the Soyuz Spacecraft: Biomedical Research. Leo Kanner Associates, Redwood City, CA. Translation of Kosmi-cheskiye Polety na Korablyakh ‘Soyuz’ Biomeditsinskiye Issledo-vaniya. Moscow: Nauka Press; 1976:1-416.

    Google Scholar 

  45. Kenyon RV, Young LR. MIT/Canadian vestibular experiments on Spacelab-1 mission: 5. Postural responses following exposure to weightlessness. Exp Brain Res 1986; 64:335-346.

    Article  PubMed  CAS  Google Scholar 

  46. Kozlovskaya IB, Kreidich YuV, Oganov VS, Koserenko OP. Pathophysiology of Motor Functions in Prolonged Manned Space Flights. Acta Astronaut 1981; 8:1059-1072.

    Article  PubMed  CAS  Google Scholar 

  47. Paloski WH. Vestibulospinal adaptation to microgravity. Otolar-yngol Head Neck Surg 1998; 118:S39-S44.

    Article  CAS  Google Scholar 

  48. Black FO, Paloski WH, Reschke MF, Igarashi M, Guedry FE, et al. Disruption of postural readaptation by inertial stimuli fol-lowing spaceflight. J Vestib Res 1999; 9:369-378.

    PubMed  CAS  Google Scholar 

  49. Black FO. Personal communication, 2001.

    Google Scholar 

  50. Parnes LS, Sindwani R. Impact of vestibular disorders on fit-ness to drive: A consensus of the American Neurotology Society. Am J Otol 1997; 18:79-85.

    PubMed  CAS  Google Scholar 

  51. Sindwani R, Parnes LS. Reporting of vestibular patients who are unfit to drive: Survey of Canadian Otolaryngologists. J Otolar-yngol 1997; 26:104-111.

    CAS  Google Scholar 

  52. Moser M. An objective testing method to determine driving abil-ity. Acta Otolaryngol 1985; 99:326-329.

    Article  PubMed  CAS  Google Scholar 

  53. Bloomberg JJ, Reschke MF, Huebner WP, Peters BT, Smith SL. Locomotor head-trunk coordination strategies following space flight. J Vestib Res 1997; 7:161-177.

    Article  PubMed  CAS  Google Scholar 

  54. Fujii MD, Patten BM. Neurology of microgravity and space travel. Neurol Clin 1992; 10:999-1013.

    PubMed  CAS  Google Scholar 

  55. Ross MD. Morphologic changes in rat vestibular system follow-ing weightlessness. J Vestib Res 1993; 3:241-251.

    PubMed  CAS  Google Scholar 

  56. Minor LB. Physiological principles of vestibular function on earth and in space. Otolaryngol Head Neck Surg 1998; 118: S5-S15.

    Article  PubMed  CAS  Google Scholar 

  57. Neuhauser H, Leopold M, von Brevern M, Arnold G, Lempert T. The interrelations of migraine, vertigo, and migrainous vertigo. Neurology 2001; 56:436-441.

    PubMed  CAS  Google Scholar 

  58. Baloh RW. Neurotology of migraine. Headache 1997; 37: 615-621.

    Article  PubMed  CAS  Google Scholar 

  59. Benson AJ, Guedry FE, Parker DE, Reschke MF. Microgravity vestibular investigations: perception of self-orientation and self-motion. J Vestib Res 1997; 7:453-457.

    Article  PubMed  CAS  Google Scholar 

  60. Biaggoni I, Costa F, Kaufmann H. Vestibular influences on autonomic cardiovascular control in humans, J Vestib Res 1988; 1:35-41.

    Google Scholar 

  61. Convertino VA. Interaction of semicircular canal stimulation with carotid baroreceptor reflex control of heart rate. J Vestib Res 1998; 8:43-49.

    Article  PubMed  CAS  Google Scholar 

  62. Yates, BJ, Miller AD. Physiological evidence that the vestibu-lar system participates in autonomic and respiratory control, J Vestib Res 1998; 8:17-25.

    Article  PubMed  CAS  Google Scholar 

  63. Furman JM, Jacob RG, Redfern MS. Clinical evidence that the vestibular system participates in autonomic control. J Vestib Res 1998; 8:27-34.

    Article  PubMed  CAS  Google Scholar 

  64. Yates BJ, Kerman IA. Post-spaceflight orthostatic intolerance: Possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Rev 1998; 28:73-82.

    Article  PubMed  CAS  Google Scholar 

  65. Reschke MF, Kornilova LN, Harm DL, Bloomberg JJ, Paloski WH. Neurosensory and sensory-motor function. In: Space Biology and Medicine, Chapter 7: Vol. III, Book 1: Humans in Spaceflight. Reston, VA: AIAA Press; 1998.

    Google Scholar 

  66. Shallo-Hoffman J, Petersen J, Muhlendyck H. How normal are “normal” Square Wave Jerks. Invest Ophthalmol Vis Sci 1989; 30:1009-1011.

    Google Scholar 

  67. Hain TC, Hanna PA, Rheinberger MA. Mal de Debarquement. Arch Otolaryngol Head Neck Surg 1999; 125:615-620.

    PubMed  CAS  Google Scholar 

  68. Young LR, Oman CM, Watt DGD, Money KE, Lictenberg BK. Spatial orientation and weightlessness and readaptation to earth’s gravity. Science 1984; 225:205-208.

    Article  PubMed  CAS  Google Scholar 

  69. Rupert AH. Tactile Situation Awareness System: Proprioceptive prostheses for sensory deficiencies. Aviat Space Environ Med 2000; 71(Suppl.):A92-A99.

    PubMed  CAS  Google Scholar 

  70. Rochilis JL, Newman DJ. A tactile display for International Space Station (ISS) Extravehicular Activity (EVA). Aviat Space Environ Med 2000; 71:571-588.

    Google Scholar 

  71. Sandler H. Artificial gravity. Acta Astronautica 1995; 35: 363-372.

    Article  PubMed  CAS  Google Scholar 

  72. Clément G, Moore ST, Raphan T, Cohen B. Perception of tilt (somatogravic illusion) in response to sustained linear accelera-tion during space flight. Exp Brain Res 2001; 138:410-418.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clark, J.B., Bacal, K. (2008). Neurologic Concerns. In: Barratt, M.R., Pool, S.L. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68164-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68164-1_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98842-9

  • Online ISBN: 978-0-387-68164-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics