Skip to main content

This chapter will focus on the effects of microgravity on the structural integrity of bone, muscle, and connective tissue, with an emphasis on the biomechanical changes, both as cause and effect. Countermeasures to these adverse effects will be discussed. Functional musculoskeletal disorders that occur as a result of adaptation to microgravity and subsequent return to Earth are also described. Further discussion of biochemical markers of bone and muscle turnover can be found in Chaps. 27 and 13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dickerman RD, Pertusi R, Smith GH. The upper range of lumbar spine bone mineral density? An examination of the current world record holder in the squat lift. Int J Sports Med 2000; 469-470.

    Google Scholar 

  2. WHO Study Group; Assessment of fracture risk and its applica-tion to screening for post-menopausal osteoporosis. WHO Tech-nical Report Series 843, WHO, Geneva; 1994.

    Google Scholar 

  3. Dietrick J, Whedon G, Schor E. Effects of mobilization upon various metabolic and physiologic functions of normal men. Am J Med 1948; 4:3-36.

    Article  Google Scholar 

  4. Mack PB, LaChance P. Effects of recumbency and space flight on bone density. Am J Clin Nutr 1967; 20(11):1194-1205.

    PubMed  CAS  Google Scholar 

  5. LeBlanc A, Schneider V, Krebs J, Evans H, Jhingram S, Johnson P. Spinal bone mineral after 5 weeks of bed rest. Calcif Tissue Int 1987; 41:259-261.

    Article  PubMed  CAS  Google Scholar 

  6. Shackelford L, LeBlanc A, Driscoll T, Evans H, Rianon N, Smith S, Spector E, Feeback D, Lai D. Resistance exercise as a coun-termeasure to disuse-induced bone loss. J Appl Physiol 2004; 97 (1):119-129.

    Article  PubMed  CAS  Google Scholar 

  7. LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks bed rest. J Bone Miner Res 1990; 5(8):843-850.

    Article  PubMed  CAS  Google Scholar 

  8. Hantman DA, Vogel JM, Donaldson CL, Friedman R, Goldsmith RS, Hulley SB. Attempts to prevent disuse osteoporosis by treat-ment with calcitonin, longitudinal compression and supplementary calcium and phosphate. J Clin Endocrinol Metab 1973; 36 (5):845-858.

    Article  PubMed  CAS  Google Scholar 

  9. Schnieder V, McDonald J. Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis. Calcif Tissue Int 1984; 36:S151-S154.

    Article  Google Scholar 

  10. Schneider V, LeBlanc A, Huntoon C. Prevention of space flight induced soft tissue calcification and disuse osteoporosis. Acta Astronaut 1993; 29(2):139-140.

    Article  PubMed  CAS  Google Scholar 

  11. Tilton FE, Degioanni JC, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space and Environ Med 1980; 11(Suppl.):1209-1213.

    Google Scholar 

  12. Rambaut PC, Smith MC, Mack PB, Vogel JM. Skeletal response. In: Richard S. Johnston, Lawrence F. Dietlein, and Charles A. Berry (eds.), Biomedical Results of Apollo. Chap. 7, pp.303-322, NASA SP-368; 1975.

    Google Scholar 

  13. Leach CS, Rambaut PC. Biochemical responses of the Skylab crewmen: An overview. In: Richard S. Johnston and Lawrence F. Dietlein. Biomedical Results from Skylab. Chap. 23, pp. 204-216, NASA SP-377; 1977.

    Google Scholar 

  14. Vogel JM, Whittle MW, Smith MC, Jr., Rambaut PC. Bone min-eral measurement—Experiment M078. In: Richard S. Johnston and Lawrence F. Dietlein. Biomedical Results from Skylab. Chap. 23, pp. 183-190, NASA SP-377; 1977.

    Google Scholar 

  15. LeBlanc A, Schneider V. Can the adult skeleton recover lost bone? Esp Gerontol 1991; 26(2-3):189-201.

    Article  CAS  Google Scholar 

  16. Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I. Peripheral computed tomography in human long bones: Evaluation of in vitro and in vivo precision; J Bone Miner Res 1992; 13:871-882.

    Google Scholar 

  17. Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK. Radiation exposure in bone density assessment. Appl Radiat Isot 1999; 50 (1):215-236.

    Article  PubMed  CAS  Google Scholar 

  18. LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Veronin L. Bone mineral and lean tissue loss after long duration spaceflight. J Bone Miner Res 1996; 11: S323 (abstract).

    Google Scholar 

  19. LeBlanc A, Shackelford L, Schneider V. Future of bone research in space. Bone 1998; 22(5) Suppl.: 113S-116S.

    Article  PubMed  CAS  Google Scholar 

  20. Schneider V, Oganov V, LeBlanc A, Rakmonov A, Taggart L, Bakulin A, Huntoon C, Grigoriev A, and Veronin L. Bone and body mass changes during space flight. Acta Astronaut 1995; 36 (8-12):463-466.

    Article  PubMed  CAS  Google Scholar 

  21. Oganov VS, Grigoriev AI, Veronin LI, Rakmonov AS, Bakulin AV, Schneider VS, LeBlanc A. Bone mineral density in cosmo-nauts after 4.5-6 month-long flights aboard orbital station Mir. Aero Environ Med 1992; 26(5-6):20-24.

    CAS  Google Scholar 

  22. Grigoriev AI, Oganov VS, Bakulin AV, Polyakov VV, Voronin LI, Morgun VV, Schneider VS, Marachko LM, Novikov, VE, LeBlanc AD, Shackelford LC. Clinicophysiological evaluation of bone changes in cosmonauts after long-term space missions. Aerosp Environ Med (Russia) 1998; 32(1):21-25.

    CAS  Google Scholar 

  23. Harm DL, Jennings RT, Meck JV, Powell MR, Putcha L, Sams CP, Schneider SM, Shackelford LC, Smith SM, Whitson PA. Genome and Hormones: Gender differences in physiology. Invited review: Gender issues related to spaceflight: A NASA Perspective. J Appl Physiol 2001; 91: 2374-2383.

    PubMed  CAS  Google Scholar 

  24. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long dura-tion spaceflight. J Bone Miner Res 2004; 19(6):1006-1012.

    Article  PubMed  Google Scholar 

  25. Kozlovskaya IB, Grigoriev AI. Russian System of Countermeasures on Board the International Space Station (ISS). The First Results. American Institute of Aeronautics and Astronautics, Inc. 54th Annual Astronautical Congress of the International Astronautical Federation and the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany; 29 Sept. to 3 Oct. 2003.

    Google Scholar 

  26. Oganov VS, Personal communication; 1996.

    Google Scholar 

  27. Dornemann TM, McMurray RG, Renner JB, Anderson JJB. Effects of high-intensity resistance exercise on bone mineral den-sity and muscle strength of 40-50-year-old women. J Sports Med Phys Fitness 1997; 37:246-251.

    PubMed  CAS  Google Scholar 

  28. Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load depen-dent. J Bone Miner Res 1996; 11:218-225.

    Article  PubMed  CAS  Google Scholar 

  29. Tsuzuku S, Shimokata H, Ikegami Y, Yabe K, Wasnich RD. Effects of high versus low-intensity resistance training on bone mineral density in young males. Calcif Tissue Int 2001; 68: 342-347.

    Article  PubMed  CAS  Google Scholar 

  30. Vincent KR, Braith RW. Resistance exercise and bone turnover in elderly men and women. Med Sci sports and Exerc 2002; 34 (1):17-23.

    Article  Google Scholar 

  31. Shackelford, LC, Feiveson A, Smith SM, Feeback D, and Greenisen M. Exercise countermeasure to disuse osteoporosis. J Bone Miner Res, 2001; 16(1):S485 (abstract).

    Google Scholar 

  32. Heinonen A, Sievanen H, Kyrolainen H, Perttunen J, and Kannus P. Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb. Bone 2001; 29(3):279-285.

    Article  PubMed  CAS  Google Scholar 

  33. Smith SM, Nillen JL, LeBlanc AD, Lipton A, Demers LM, Lane HW, Leach CS. Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab 1998; 83:3584-3591.

    Article  PubMed  CAS  Google Scholar 

  34. Smith SM, Heer M. Calcium and bone metabolism during space flight. Nutrition 2002; 18:849-852.

    Article  PubMed  CAS  Google Scholar 

  35. Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J Bone Min Res 2005; 20(2):208-218.

    Article  CAS  Google Scholar 

  36. Mujika I, Padilla S. Muscular characteristics of detraining in humans. Med Sci Sports Exerc 2001; 33(8):1297-1303.

    Article  PubMed  CAS  Google Scholar 

  37. Greenleaf JE, Bulblian R, Bernauer EM, Haskell WL, Moore T. Exercise training protocols for astronauts in microgravity. J Appl Physiol 1989; 67:2191-2204.

    PubMed  CAS  Google Scholar 

  38. Fitts RH, Riley DR, Widrick JJ. Microgravity and skeletal mus-cle. J Applied Physiol 2000; 89:823-839.

    CAS  Google Scholar 

  39. Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH. Effect of a 17 day spaceflight on contractile proper-ties of human soleus muscle fibers. J Physiol. 1999; 516 (Pt. 3): 915-930.

    Article  PubMed  CAS  Google Scholar 

  40. Lee, S.M.C., M.E. Guilliams, S.F. Siconolfi, M.C. Greenisen, S.M. Schneider, and L.C. Shackelford. Concentric strength and endurance after long duration spaceflight. Med Sci Sports Exerc 2000; 32:S363.

    Google Scholar 

  41. LeBlanc A, Lin C, Shackelford L, Sinitsyn, V, Evans, H, Beli-chenko O, Shenkman B, Koslovsyaya I, Oganov V, Bakulin A, Hedrick T, Feeback D. Muscle volume, MRI relaxation times (T2), and body composition after space flight. J Appl Physiol 2000; 89(6):2158-2164.

    PubMed  CAS  Google Scholar 

  42. Ledsome JR, Cole C, Gagnon F, Susak L. Wing, P; Long term stability of somatosensory evoked potentials and the effects of microgravity. Aviat Space Environ Med 1995; 66(7):641-644.

    PubMed  CAS  Google Scholar 

  43. Hutchinson KJ, Watenpaugh DE, Murthy G, Convertino VA, Hargens AR. Back Pain during 6 degrees head down tilt approxi-mates that during actual microgravity. Aviat Space Environ Med 1995; 66(3):256-259.

    PubMed  CAS  Google Scholar 

  44. LeBlanc A, Evans HJ, Schneider VS, Wendt RE3rd, Hedrick TD. Changes in intervertebral disc cross-sectional area with bed rest and space flight. Spine 1994; 19(7):812-817.

    Article  PubMed  CAS  Google Scholar 

  45. Johnston SL, Wear ML, Birzele JA, and Hamm PB. Incidence of herniated nucleus pulposus among astronauts and other selected populations. Aviat Space Environ Med 1998; 69(3), abstract.

    Google Scholar 

  46. O’Conner JA, Lanyon LE. The influence of strain rate on adap-tive remodeling. J Biomech 1982; 15:767-781.

    Article  Google Scholar 

  47. Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol 1995; E438-E442.

    Google Scholar 

  48. Turner CH. Three rules for bone adaptation to mechanical stim-uli. Bone 1998; 23(5):399-407.

    Article  PubMed  CAS  Google Scholar 

  49. Whedon GD, Lutwak L, Rambaut P, Whittle M, Leach C, Reid J, Smith M. Effect of weightlessness on mineral metabolism. Meta-bolic studies on Skylab orbital flights. Calcif Tissue Res 1976; 21 (Suppl.):423-430.

    PubMed  Google Scholar 

  50. Convertino VA, Sandler H. Exercise countermeasures for space-flight. Acta Astronaut 1995; 35(4/5):253-270.

    Article  PubMed  CAS  Google Scholar 

  51. Lackner JR, DiZio P. Artificial Gravity as a Countermeasure in Long-duration Space Flight. J Neurosci Res 2000; 62:169-176.

    Article  PubMed  CAS  Google Scholar 

  52. LeBlanc, A. D., L. Shackelford, T. Driscoll. H. Evans, N. Rianon, S. Smith. Alendronate as a potential countermeasure to micro-gravity induced bone loss. J Bone Miner Res 2001; 16(1 Suppl.): S285.

    Google Scholar 

  53. Schneider VS, McDonald J. Prevention of disuse osteoporosis: Clodronate therapy. In: H.F. DeLuca, H.M. Frost, W.S. Lee, C.C. Johnston, and A.M. Parfitt (eds.), Osteoporosis—Recent advances in pathogenesis and treatment. Baltimore, MD: Uni-versity Park Press; 1981: 491.

    Google Scholar 

  54. Black FO, Paloski WH, Reschke ME, Igarashi M, Guedry F, Andersen DJ. Disruption of postural readaptation by inertial stim-uli following space flight. J Vestib Res 1999; 9(5):369-378.

    PubMed  CAS  Google Scholar 

Suggested Readings

  • Morey-Holton, WA, Meulen VD. The skeleton and its adaptation to gravity. In: Fregly MJ, Blatteis CM (eds.), Handbook of Physiol-ogy, Chapter 31. Section 4: Environmental Physiology, Volume I. Published by the American Physiological Society. New York, NY: Oxford University Press; 1996: 691-719.

    Google Scholar 

  • Webster SS Jee. Integrated bone tissue and physiology: Anatomy and physiology. In: Stephen C. Cowin (ed.), Bone Mechanics Hand-book. 2nd edn. Boca Raton, FL: CRC Press; 2001: 1-1-1-68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shackelford, L.C. (2008). Musculoskeletal Response to Space Flight. In: Barratt, M.R., Pool, S.L. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68164-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68164-1_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98842-9

  • Online ISBN: 978-0-387-68164-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics