Skip to main content

Combination Chemistry: Structure–Activity Relationships of Novel Psychoactive Cannabinoids

  • Chapter
  • First Online:
Neuropharmacology of New Psychoactive Substances (NPS)

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 32))

Abstract

Originally developed as research tools for use in structure–activity relationship studies, synthetic cannabinoids contributed to significant scientific advances in the cannabinoid field. Unfortunately, a subset of these compounds was diverted for recreational use beginning in the early 2000s. As these compounds were banned, they were replaced with additional synthetic cannabinoids with increasingly diverse chemical structures. This chapter focuses on integration of recent results with those covered in previous reviews. Whereas most of the early compounds were derived from the prototypic naphthoylindole JWH-018, currently popular synthetic cannabinoids include tetramethylcyclopropyl ketones and indazole-derived cannabinoids (e.g., AB-PINACA, AB-CHMINACA). Despite their structural differences, psychoactive synthetic cannabinoids bind with high affinity to CB1 receptors in the brain and, when tested, have been shown to activate these receptors and to produce a characteristic profile of effects, including suppression of locomotor activity, antinociception, hypothermia, and catalepsy, as well as Δ9-tetrahydrocannabinol (THC)-like discriminative stimulus effects in mice. When they have been tested, synthetic cannabinoids are often found to be more efficacious at activation of the CB1 receptor and more potent in vivo. Further, their chemical alteration by thermolysis during use and their uncertain stability and purity may result in exposure to degradants that differ from the parent compound contained in the original product. Consequently, while their intoxicant effects may be similar to those of THC, use of synthetic cannabinoids may be accompanied by unpredicted, and sometimes harmful, effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    CAS  PubMed  Google Scholar 

  2. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Google Scholar 

  3. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–64

    CAS  PubMed  Google Scholar 

  4. Howlett AC, Bidaut-Russell M, Devane WA, Melvin LS, Johnson MR, Herkenham M (1990) The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends Neurosci 13:420–423

    CAS  PubMed  Google Scholar 

  5. Pertwee RG (2008) Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol 13:147–159

    CAS  PubMed  Google Scholar 

  6. Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P et al (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    CAS  PubMed  Google Scholar 

  7. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, DeCosta BR et al (1990) Cannabinoid receptor localization in the brain. Proc Natl Acad Sci U S A 87:1932–1936

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas BF, Wei X, Martin BR (1992) Characterization and autoradiographic localization of the cannabinoid binding site in rat brain using [3H]11-OH-delta 9-THC-DMH. J Pharmacol Exp Ther 263:1383–1390

    CAS  PubMed  Google Scholar 

  9. Breivogel CS, Childers SR (2000) Cannabinoid agonist signal transduction in rat brain: comparison of cannabinoid agonists in receptor binding, G-protein activation, and adenylyl cyclase inhibition. J Pharmacol Exp Ther 295:328–336

    CAS  PubMed  Google Scholar 

  10. Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    CAS  PubMed  Google Scholar 

  11. Wiley JL, Lowe JA, Balster RL, Martin BR (1995) Antagonism of the discriminative stimulus effects of delta 9-tetrahydrocannabinol in rats and rhesus monkeys. J Pharmacol Exp Ther 275:1–6

    CAS  PubMed  Google Scholar 

  12. Wiley JL, Barrett RL, Lowe J, Balster RL, Martin BR (1995) Discriminative stimulus effects of CP 55,940 and structurally dissimilar cannabinoids in rats. Neuropharmacology 34:669–676

    CAS  PubMed  Google Scholar 

  13. Wiley JL, Marusich JA, Lefever TW, Grabenauer M, Moore KN, Thomas BF (2013) Cannabinoids in disguise: Delta-9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 75:145–154

    CAS  PubMed  Google Scholar 

  14. Pertwee RG (2006) The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond) 30 Suppl 1:S13–S18

    Google Scholar 

  15. Poso A, Huffman JW (2008) Targeting the cannabinoid CB2 receptor: modelling and structural determinants of CB2 selective ligands. Br J Pharmacol 153:335–346

    CAS  PubMed  Google Scholar 

  16. Fowler CJ (2015) The potential of inhibitors of endocannabinoid metabolism for drug development: a critical review. Handb Exp Pharmacol 231:95–128

    CAS  PubMed  Google Scholar 

  17. Kohnz RA, Nomura DK (2014) Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids. Chem Soc Rev 43:6859–6869

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    CAS  PubMed  Google Scholar 

  19. de Kloet AD, Woods SC (2009) Minireview: endocannabinoids and their receptors as targets for obesity therapy. Endocrinology 150:2531–2536

    PubMed  Google Scholar 

  20. Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. CNS Neurol Disord Drug Targets 8:403–421

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hillard CJ, Weinlander KM, Stuhr KL (2012) Contributions of endocannabinoid signaling to psychiatric disorders in humans: genetic and biochemical evidence. Neuroscience 204:207–229

    CAS  PubMed  Google Scholar 

  22. Serrano A, Parsons LH (2011) Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 132:215–241

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wax PM (2002) Just a click away: recreational drug Web sites on the Internet. Pediatrics 109, e96

    PubMed  Google Scholar 

  24. Holley P, Wan W (2015) Deadly Chinese drugs are flooding the U.S., and police can’t stop them. Washington Post: Washington, DC

    Google Scholar 

  25. Bell S, Nida C (2015) Pyrolysis of drugs of abuse: a comprehensive review. Drug Test Anal 7:445–456

    CAS  PubMed  Google Scholar 

  26. Brents LK, Reichard EE, Zimmerman SM, Moran JH, Fantegrossi WE, Prather PL (2011) Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS One 6, e21917

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brents LK, Gallus-Zawada A, Radominska-Pandya A, Vasiljevik T, Prisinzano TE, Fantegrossi WE et al (2012) Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem Pharmacol 83:952–961

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Seely KA, Brents LK, Radominska-Pandya A, Endres GW, Keyes GS, Moran JH et al (2012) A major glucuronidated metabolite of JWH-018 is a neutral antagonist at CB1 receptors. Chem Res Toxicol 25:825–827

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huffman JW, Szklennik PV, Almond A, Bushell K, Selley DE, He H et al (2005) 1-Pentyl-3-phenylacetylindoles, a new class of cannabimimetic indoles. Bioorg Med Chem Lett 15:4110–4113

    CAS  PubMed  Google Scholar 

  30. Wiley JL, Marusich JA, Lefever TW, Antonazzo KR, Wallgren MT, Cortes RA et al (2015) AB-CHMINACA, AB-PINACA, and FUBIMINA: affinity and potency of novel synthetic cannabinoids in producing delta9-tetrahydrocannabinol-like effects in mice. J Pharmacol Exp Ther 354:328–339

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hruba L, Ginsburg B, McMahon LR (2012) Apparent inverse relationship between cannabinoid agonist efficacy and tolerance/cross-tolerance produced by {Delta}9-tetrahydrocannabinol treatment in rhesus monkeys. J Pharmacol Exp Ther 342:843–849

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wiley JL, Marusich JA, Huffman JW (2014) Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci 97:55–63

    CAS  PubMed  Google Scholar 

  33. Wiley JL, Marusich JA, Huffman JW, Balster RL, Thomas BF (2011) Hijacking of basic research: the case of synthetic cannabinoids. RTI Press, Research Triangle Park, NC

    Google Scholar 

  34. Huffman JW, Dai D, Martin BR, Compton DR (1994) Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett 4:563–566

    Google Scholar 

  35. Lainton JAH, Huffman JW, Martin BR, Compton DR (1995) 1-Alkyl-3-(1-naphthoyl)pyrroles: a new cannabinoid class. Tetrahedron Lett 36:1401–1404

    CAS  Google Scholar 

  36. Wiley JL, Compton DR, Dai D, Lainton JA, Phillips M, Huffman JW et al (1998) Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J Pharmacol Exp Ther 285:995–1004

    CAS  PubMed  Google Scholar 

  37. Denooz R, Vanheugen JC, Frederich M, de Tullio P, Charlier C (2013) Identification and structural elucidation of four cannabimimetic compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in seized products. J Anal Toxicol 37:56–63

    CAS  PubMed  Google Scholar 

  38. Logan BK, Reinhold LE, Xu A, Diamond FX (2012) Identification of synthetic cannabinoids in herbal incense blends in the United States. J Forensic Sci 57:1168–1180

    CAS  PubMed  Google Scholar 

  39. Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B et al (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend 60:133–140

    CAS  PubMed  Google Scholar 

  40. Wiley JL, Marusich JA, Martin BR, Huffman JW (2012) 1-Pentyl-3-phenylacetylindoles and JWH-018 share in vivo cannabinoid profiles in mice. Drug Alcohol Depend 123:148–153

    CAS  PubMed  Google Scholar 

  41. Huffman JW, Mabon R, Wu MJ, Lu J, Hart R, Hurst DP et al (2003) 3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB(1) cannabinoid receptor. Bioorg Med Chem 11:539–549

    CAS  PubMed  Google Scholar 

  42. Reggio PH, Basu-Dutt S, Barnett-Norris J, Castro MT, Hurst DP, Seltzman HH et al (1998) The bioactive conformation of aminoalkylindoles at the cannabinoid CB1 and CB2 receptors: insights gained from (E)- and (Z)-naphthylidene indenes. J Med Chem 41:5177–5187

    CAS  PubMed  Google Scholar 

  43. Wiley JL, Smith VJ, Chen J, Martin BR, Huffman JW (2012) Synthesis and pharmacology of 1-alkyl-3-(1-naphthoyl)indoles: steric and electronic effects of 4- and 8-halogenated naphthoyl substituents. Bioorg Med Chem 20:2067–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kavanagh P, Grigoryev A, Savchuk S, Mikhura I, Formanovsky A (2013) UR-144 in products sold via the Internet: identification of related compounds and characterization of pyrolysis products. Drug Test Anal 5:683–692

    CAS  PubMed  Google Scholar 

  45. Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV et al (2010) Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity. J Med Chem 53:295–315

    CAS  PubMed  Google Scholar 

  46. Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV et al (2008) Indol-3-yl-tetramethylcyclopropyl ketones: effects of indole ring substitution on CB2 cannabinoid receptor activity. J Med Chem 51:1904–1912

    CAS  PubMed  Google Scholar 

  47. Chin CL, Tovcimak AE, Hradil VP, Seifert TR, Hollingsworth PR, Chandran P et al (2008) Differential effects of cannabinoid receptor agonists on regional brain activity using pharmacological MRI. Br J Pharmacol 153:367–379

    CAS  PubMed  Google Scholar 

  48. Thomas BF, Endres GW, Wiley JL, Pollard GT, Decker AM, Gay EA, Patel PR, Kovach AL, Grabenauer M. (2015). Chemical exposures and risks associated with vaporization and inhalation of synthetic cannabinoids. Paper presented at the annual meeting of the International Cannabinoid Research Society, Wolfville, Nova Scotia, Canada

    Google Scholar 

  49. Grigoryev A, Kavanagh P, Melnik A, Savchuk S, Simonov A (2013) Gas and liquid chromatography-mass spectrometry detection of the urinary metabolites of UR-144 and its major pyrolysis product. J Anal Toxicol 37:265–276

    CAS  PubMed  Google Scholar 

  50. Banister SD, Wilkinson SM, Longworth M, Stuart J, Apetz N, English K et al (2013) The synthesis and pharmacological evaluation of adamantane-derived indoles: cannabimimetic drugs of abuse. ACS Chem Neurosci 4:1081–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM et al (2015) Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci 6:1445–1458

    CAS  PubMed  Google Scholar 

  52. Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M et al (2015) Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci 6:1546–1559

    CAS  PubMed  Google Scholar 

  53. Huffman JW, Padgett LW (2005) Recent developments in the medicinal chemistry of cannabimimetic indoles, pyrroles and indenes. Curr Med Chem 12:1395–1411

    CAS  PubMed  Google Scholar 

  54. Manera C, Tuccinardi T, Martinelli A (2008) Indoles and related compounds as cannabinoid ligands. Mini Rev Med Chem 8:370–387

    CAS  PubMed  Google Scholar 

  55. Reggio PH (2003) Pharmacophores for ligand recognition and activation/inactivation of the cannabinoid receptors. Curr Pharm Des 9:1607–1633

    CAS  PubMed  Google Scholar 

  56. Uchiyama N, Shimokawa Y, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2014) Two new synthetic cannabinoids, AM-2201 benzimidazole analog (FUBIMINA) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM), and three phenethylamine derivatives, 25H-NBOMe 3,4,5-trimethoxybenzyl analog, 25B-NBOMe, and 2C-N-NBOMe, identified in illegal products. Forensic Toxicol 32:105–115

    CAS  Google Scholar 

  57. Drug Enforcement Agency (2015) Schedules of controlled substances: temporary placement of three synthetic cannabinoids into schedule I. Final order. Fed Regist 80:5042–5047

    Google Scholar 

  58. Peterson BL, Couper FJ (2015) Concentrations of AB-CHMINACA and AB-PINACA and driving behavior in suspected impaired driving cases. J Anal Toxicol 39:642–647

    CAS  PubMed  Google Scholar 

  59. Compton DR, Rice KC, De Costa BR, Razdan RK, Melvin LS, Johnson MR et al (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther 265:218–226

    CAS  PubMed  Google Scholar 

  60. Griffin G, Atkinson PJ, Showalter VM, Martin BR, Abood ME (1998) Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5′-O-(3-[35S]thio)-triphosphate binding assay in rat cerebellar membranes. J Pharmacol Exp Ther 285:553–560

    CAS  PubMed  Google Scholar 

  61. Huffman JW (2000) The search for selective ligands for the CB2 receptor. Curr Pharm Des 6:1323–1337

    CAS  PubMed  Google Scholar 

  62. Stella N (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58:1017–1030

    PubMed  PubMed Central  Google Scholar 

  63. Yao BB, Hsieh G, Daza AV, Fan Y, Grayson GK, Garrison TR et al (2009) Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 328:141–151

    CAS  PubMed  Google Scholar 

  64. Huffman JW, Padgett LW, Isherwood ML, Wiley JL, Martin BR (2006) 1-Alkyl-2-aryl-4-(1-naphthoyl)pyrroles: new high affinity ligands for the cannabinoid CB(1) and CB(2) receptors. Bioorg Med Chem Lett 16:5432–5435

    CAS  PubMed  Google Scholar 

  65. Huffman JW, Zengin G, Wu MJ, Lu J, Hynd G, Bushell K et al (2005) Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg Med Chem 13:89–112

    CAS  PubMed  Google Scholar 

  66. Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK et al (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav 40:471–478

    CAS  PubMed  Google Scholar 

  67. Jarbe TU, Gifford RS (2014) “Herbal incense”: designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. Life Sci 97:64–71

    CAS  PubMed  Google Scholar 

  68. Wiley JL (1999) Cannabis: discrimination of “internal bliss”? Pharmacol Biochem Behav 64:257–260

    CAS  PubMed  Google Scholar 

  69. Atwood BK, Wager-Miller J, Haskins C, Straiker A, Mackie K (2012) Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: implications for the therapeutic potential of CB(2) ligands. Mol Pharmacol 81:250–263

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20(Suppl 1):10–14

    CAS  PubMed  Google Scholar 

  71. Kenakin T (2014) What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. Trends Pharmacol Sci 35:434–441

    CAS  PubMed  Google Scholar 

  72. Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216

    CAS  PubMed  Google Scholar 

  73. Louis A, Peterson BL, Couper FJ (2014) XLR-11 and UR-144 in Washington state and state of Alaska driving cases. J Anal Toxicol 38:563–568

    CAS  PubMed  Google Scholar 

  74. Gurney SM, Scott KS, Kacinko SL, Presley BC, Logan BK (2014) Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic Sci Rev 26:53–78

    CAS  PubMed  Google Scholar 

  75. Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Neuropsychopharmacol Biol Psychiatry 39:234–243

    CAS  Google Scholar 

  76. Auwarter V, Dresen S, Weinmann W, Muller M, Putz M, Ferreiros N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837

    PubMed  Google Scholar 

  77. Vardakou I, Pistos C, Spiliopoulou C (2010) Spice drugs as a new trend: mode of action, identification and legislation. Toxicol Lett 197:157–162

    CAS  PubMed  Google Scholar 

  78. Winstock AR, Barratt MJ (2013) Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend 131:106–111

    CAS  PubMed  Google Scholar 

  79. Gunderson EW, Haughey HM, Ait-Daoud N, Joshi AS, Hart CL (2012) “Spice” and “K2” herbal highs: a case series and systematic review of the clinical effects and biopsychosocial implications of synthetic cannabinoid use in humans. Am J Addict 21:320–326

    PubMed  Google Scholar 

  80. Zimmermann US, Winkelmann PR, Pilhatsch M, Nees JA, Spanagel R, Schulz K (2009) Withdrawal phenomena and dependence syndrome after the consumption of “spice gold”. Dtsch Arztebl Int 106:464–467

    PubMed  PubMed Central  Google Scholar 

  81. Schneir AB, Cullen J, Ly BT (2011) “Spice” girls: synthetic cannabinoid intoxication. J Emerg Med 40:296–299

    PubMed  Google Scholar 

  82. Schifano F, Corazza O, Deluca P, Davey Z, Di Furia L, Farre M et al (2009) Psychoactive drug or mystical incense? Overview of the online available information on Spice products. Int J Cult Ment Health 2:137–144

    Google Scholar 

  83. Hermanns-Clausen M, Kneisel S, Szabo B, Auwarter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108:534–544

    PubMed  Google Scholar 

  84. Lapoint J, James LP, Moran CL, Nelson LS, Hoffman RS, Moran JH (2011) Severe toxicity following synthetic cannabinoid ingestion. Clin Toxicol 49:760–764

    CAS  Google Scholar 

  85. Every-Palmer S (2011) Synthetic cannabinoid JWH-018 and psychosis: an explorative study. Drug Alcohol Depend 117:152–157

    CAS  PubMed  Google Scholar 

  86. Müller H, Sperling W, Köhrmann M, Huttner HB, Kornhuber J, Maler J-M (2010) The synthetic cannabinoid Spice as a trigger for an acute exacerbation of cannabis induced recurrent psychotic episodes. Schizophr Res 118:309–310

    PubMed  Google Scholar 

  87. Bhanushali GK, Jain G, Fatima H, Leisch LJ, Thornley-Brown D (2013) AKI associated with synthetic cannabinoids: a case series. Clin J Am Soc Nephrol 8:523–526

    CAS  PubMed  Google Scholar 

  88. Center for Disease Control and Prevention (2013) Acute kidney injury associated with synthetic cannabinoid use - multiple States, 2012. MMWR Morb Mortal Wkly Rep 62:93–98

    Google Scholar 

  89. Trecki J, Gerona RR, Schwartz MD (2015) Synthetic cannabinoid-related illnesses and deaths. N Engl J Med 373:103–107

    CAS  PubMed  Google Scholar 

  90. Forrester MB, Kleinschmidt K, Schwarz E, Young A (2012) Synthetic cannabinoid and marijuana exposures reported to poison centers. Hum Exp Toxicol 31:1006–1011

    CAS  PubMed  Google Scholar 

  91. Winstock A, Lynskey M, Borschmann R, Waldron J (2015) Risk of emergency medical treatment following consumption of cannabis or synthetic cannabinoids in a large global sample. J Psychopharmacol 29:698–703

    PubMed  Google Scholar 

Download references

Acknowledgements

Preparation of this review was supported in part by National Institute on Drug Abuse grant DA-003672; NIDA had no further role in the writing of the review or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny L. Wiley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wiley, J.L., Marusich, J.A., Thomas, B.F. (2016). Combination Chemistry: Structure–Activity Relationships of Novel Psychoactive Cannabinoids. In: Baumann, M.H., Glennon, R.A., Wiley, J.L. (eds) Neuropharmacology of New Psychoactive Substances (NPS). Current Topics in Behavioral Neurosciences, vol 32. Springer, Cham. https://doi.org/10.1007/7854_2016_17

Download citation

Publish with us

Policies and ethics