Skip to main content
  • 5651 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ahmed B, Kastin AJ, Banks WA, Zadine JE (1994) CNS effects of peptides: a cross-listing of peptides and their central actions published in the journal Peptides, 1986–1993. Peptides 15: 1105–1155

    Article  CAS  PubMed  Google Scholar 

  • Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 29: 83–120

    Article  CAS  PubMed  Google Scholar 

  • Barbour B, Häusser M (1997) Intersynaptic diffusion of neurotransmitter. Trends Neurosci 20: 377–384

    Article  CAS  PubMed  Google Scholar 

  • Becker C-M (1995) Glycine receptors: Molecular heterogeneity and implications for disease. Neuroscientist 1: 130–141

    Article  CAS  Google Scholar 

  • Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P (2001) Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30: 619–639

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A (1998) Arvid Carlsson. In: Squire LR (ed) The history of neuroscience in autobiography. Academic Press, San Diego, pp 28–66

    Google Scholar 

  • Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463: 235–272

    Article  CAS  PubMed  Google Scholar 

  • Childress AR, O’Brien C (2000) Dopamine receptor partial agonists could address the duality of cocaine craving. Trends Pharmacol Sci 21: 6–9

    Article  CAS  PubMed  Google Scholar 

  • Choquet D, Griller A (2003) The role of receptor diffusion in the organisation of the postsynaptic membrane. Nature Rev Neurosci 4:251–265

    Article  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology. Oxford University Press, Oxford

    Google Scholar 

  • Cordeaux Y, Hill SJ (2002) Mechanisms of cross-talk between G-proteincoupled receptors. Neurosignals 11: 45–57

    Article  CAS  PubMed  Google Scholar 

  • Curtis D, Phillis J, Watkins J (1960) The chemical excitation of spinal neurons by certain acidic amino acids. J Physiol 150: 656–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65: 1–105

    Article  CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39: 889–909

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14: 5147–5159

    CAS  PubMed  Google Scholar 

  • De Vries TJ, Shippenberg TS (2002) Neural systems underlying opiate addiction. J Neurosci 22: 3321–3325

    PubMed  Google Scholar 

  • Dixon JF, Hokin LE (1997) The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates. Proc Natl Acad Sci USA 94: 4757–4760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drevets WC, Gautier CH, Price JC et al (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49: 81–96

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Charney DS (1999) New vistas on an old transmitter. Biol Psychiatry 46: 1121–1123

    Article  Google Scholar 

  • Eells JB (2003) The control of dopamine neuron development, function and survival: insights from transgenic mice and the relevance to human disease. Curr Med Chem 10: 857–870

    Article  CAS  PubMed  Google Scholar 

  • Elliott TR (1905) The action of adrenaline. J Physiol 32: 401–467

    Article  PubMed Central  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48: 649–684

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22: 3312–3320

    CAS  PubMed  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20: 482–487

    Article  PubMed  Google Scholar 

  • Gines S, Hillion J, Le Crom S et al (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97: 8606–8611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gingrich JA, Hen R (2001) Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology 155: 1–10

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1999) The relevance of the dopamine-D1 receptor in the cognitive symptoms of schizophrenia. Neuropsychopharmacology 21: S170–S180

    Article  CAS  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23: 435–447

    Article  CAS  PubMed  Google Scholar 

  • Gründer G, Carlsson A, Wong DF (2003) Mechanism of new antipsychotic medications. Arch Gen Psychiatry 60: 974–977

    Article  PubMed  Google Scholar 

  • Hauber W (2002) Adenosin: ein Purinnukleosid mit neuromodulatorischen Wirkungen. Neuroforum 8: 228–234

    CAS  Google Scholar 

  • Höfelt T, Broberger C, Xu ZQD, Sergeyev V, Ubink R, Dietz M (2000) Neuropeptides — an overview. Neuropharmacology 39: 1337–1356

    Article  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–554

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa J, Li Z, Dai J, Meltzer HY (2002) Atypical antipsychotic drugs, quetiapine, iloperidone, and melperone, preferentially increase dopamine and acetylcholine release in rat medial prefrontal cortex: role of 5-HT1A receptor agonism. Brain Res 956: 349–357

    Article  CAS  PubMed  Google Scholar 

  • Isaac JTR (2003) Postsnaptic silent synapses: evidence and mechanisms. Neuropharmacology 45: 450–460

    Article  CAS  PubMed  Google Scholar 

  • Iversen L (2003) Cannabis and the brain. Brain 126: 1252–1270

    Article  PubMed  Google Scholar 

  • Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68: 863–911

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–225

    Article  CAS  PubMed  Google Scholar 

  • Jonas P, Bischofberger J, Sandkühler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281: 419–424

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22: 555–561

    Article  CAS  PubMed  Google Scholar 

  • Joseph MH, Datla K, Young AMJ (2003) The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition? Neurosci Biobehav Rev 27: 527–541

    Article  CAS  PubMed  Google Scholar 

  • Kahlig KM, Galli A (2003) Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur J Pharmacol 479: 153–158

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Hediger MA (2003) The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol 479: 237–247

    Article  CAS  PubMed  Google Scholar 

  • Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nature Neurosci 5: 1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci 21: 1–5

    Google Scholar 

  • Koch M (2002) Pharmakologische Unterstützung der Expositionstherapie bei Angststörungen. Tierexperimentelle Untersuchungen. Der Nervenarzt 73: 481–483

    Article  CAS  PubMed  Google Scholar 

  • Krnjevic K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54: 418–540

    CAS  Google Scholar 

  • Langer SZ (1997) 25 years since the discovery of presynaptic receptors: present knowledge and future perspectives. Trends Pharmacol Sci 18: 95–99

    Article  CAS  PubMed  Google Scholar 

  • Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nature Rev Neurosci 4: 495

    Article  Google Scholar 

  • Lindskog M, Svenningsson P, Pozzi L et al (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418:734–736

    Article  Google Scholar 

  • Link E, Jahn R (1996) Freisetzung von Transmittern in Neuronen — auf dem Weg zu einem molekularen Verständnis. Neuroforum 2: 18–25

    Google Scholar 

  • Madden DR (2002) The structure and function of glutamate receptor ion channels. Nature Rev Neurosci 3: 91–101

    Article  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation — a decade of progress? Science 285: 1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI (1999) Immunohistochemical localization of GABAB receptors in the rat central nervous system. J Comp Neurol 405: 299–321

    Article  CAS  PubMed  Google Scholar 

  • Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54: 369–415

    Article  CAS  PubMed  Google Scholar 

  • Miller NE (1965) Chemical coding of behavior in the brain. Science 148:328–338

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Pharmacol Rev 78: 189–223

    CAS  Google Scholar 

  • Nguyen L, Rigo J-M, Rocher V et al (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305:187–202

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma S, Katsura M (2001) Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 64: 97–108

    Article  CAS  PubMed  Google Scholar 

  • Onodera K, Yamatodani A, Watanabe T, Wada H (1994) Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol 42: 685–702

    Article  CAS  PubMed  Google Scholar 

  • Otsuka M, Yoshioka K (1993) Neurotransmitter functions of mammalian tachykinins. Physiol Rev 73: 229–308

    CAS  PubMed  Google Scholar 

  • Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54: 581–618

    Article  CAS  PubMed  Google Scholar 

  • Parnas H, Segel L, Dudel J, Parnas I (2000) Autoreceptors, membrane potential and the regulation of transmitter release. Trends Pharmacol Sci 23: 60–68

    CAS  Google Scholar 

  • Perry E, Walker M, Grace J, Perry M (1999) Acetylcholine in mind: a neurotransmitter correlate of conciousness? Trends Neurosci 22: 273–280

    Article  CAS  PubMed  Google Scholar 

  • Pilla M, Perachon S, Sautel F et al (1999) Selective inhibition of cocaineseeking behaviour by a partial dopamine D3 receptor agonist. Nature 400: 371–375

    Article  CAS  PubMed  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nature Rev Neurosci 4: 873–884

    Article  CAS  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult brain. Neuroscience 101: 815–850

    Article  CAS  PubMed  Google Scholar 

  • Pulvirenti L, Koob GF (2002) Being partial to psychostimulant addiction therapy. Trends Pharmacol Sci 23: 151–153

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133: 130–138

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ, Cole BJ (1985) Functional hypotheses of the coeruleocortical noradrenergic projection: a review of recent experimentation and theory. Physiol Psychol 13: 127–150

    Article  Google Scholar 

  • Rovati GE, Nicosia S (1994) Lower efficacy: interaction with inhibitory receptor or partial agonism? Trends Pharmacol Sci 15: 140–144

    Article  CAS  PubMed  Google Scholar 

  • Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22: 410–416

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23: 28–46

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23: 473–500

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in mammalian brain. Physiol Rev 71: 1–51

    CAS  PubMed  Google Scholar 

  • Starke K (2003) Presynaptic autoreceptors in the third decade: focus on α2-adrenoceptors. J Neurochem 78: 685–693

    Article  Google Scholar 

  • Sulzer D, Rayport S (2000) Dale’s principle and glutamate corelease from ventral midbrain dopamine neurons. Amino Acids 19: 45–52

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Carruthers R et al (2003) Diverse psychotomimetics act through a common signaling pathway. Science 302:1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Tamminga CA (2002) Partial dopamine agonists in the treatment of psychosis. J Neural Transm 109: 411–420

    Article  CAS  PubMed  Google Scholar 

  • Tamminga CA, Schaffer MH, Smith RC, Davis JM (1978) Schizophrenic symptoms improve with apomorphine. Science 200: 567–568

    Article  CAS  PubMed  Google Scholar 

  • Vezina P, Blanc G, Glowinski J, Tassin JP (1991) Opposed behavioural outputs of increased dopamine transmission in prefrontocortical and subcortical areas: a role for the cortical D1-receptor. Eur J Neurosci 3: 1001–1007

    Article  PubMed  Google Scholar 

  • Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, Angst J (1997) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F] fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7: 9–24

    Article  CAS  PubMed  Google Scholar 

  • von Bohlen und Halbach O, Dermietzel R (2002) Neurotransmitters and neuromodulators. Wiley-VCH, Weinheim

    Google Scholar 

  • Wainer BH, Levey AI, Mufson EJ, Mesulam MM (1984) Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase. Neurochem Int 6: 163–182

    Article  CAS  PubMed  Google Scholar 

  • Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37: 475–524

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Braun N, Allgeier C, Illes P (1998) Nukleotide, eine neue Klasse extrazellulärer Signalstoffe im Nervensystem. Neuroforum 4: 148–157

    Google Scholar 

  • Zoli M, Jansson A, Sykova E, Agnati LF, Fuxe K (1999) Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 20: 142–150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Koch, M. (2006). Neuropharmakologie. In: Förstl, H., Hautzinger, M., Roth, G. (eds) Neurobiologie psychischer Störungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30887-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-30887-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25694-6

  • Online ISBN: 978-3-540-30887-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics