Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alzheimer C, Schwindt PC, Crill WE (1993) Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 13: 660–673

    CAS  PubMed  Google Scholar 

  • Bichet D, Haass FA, Jan LY (2003) Merging functional studies with structures of inward-rectifier K(+) channels. Nature Rev Neurosci 4:957–967

    Article  CAS  Google Scholar 

  • Bischofberger J, Geiger JR, Jonas P (2002) Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J Neurosci 22: 10593–10602

    CAS  PubMed  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JG (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289: 953–957

    Article  CAS  PubMed  Google Scholar 

  • Brown TH, Kairiss EW, Keenan CL (1990) Hebbian synapses: biophysical mechanisms and algorithms. Annu Rev Neurosci 13: 475–511

    Article  CAS  PubMed  Google Scholar 

  • Budde T, Meuth S, Pape HC (2002) Calcium-dependent inactivation of neuronal calcium channels. Nature Rev Neurosci 3: 873–883

    Article  CAS  Google Scholar 

  • Chen K, Aradi I, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz I (2001) Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature Med 7: 331–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coetzee WA, Amarillo Y, Chiu J et al (1999) Molecular diversity of K+ channels. Ann NY Acad Sci 868: 233–285

    Article  CAS  PubMed  Google Scholar 

  • Colbert CM, Johnston D (1996) Axonal action-potential inititation and Na+ channel densitites in the soma and axon initial segment of subicular pyramidal neurons. J Neurosci 16: 6676–6686

    CAS  PubMed  Google Scholar 

  • Colbert CM, Pan E (2002) Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nature Neurosci 5:533–538

    Article  CAS  PubMed  Google Scholar 

  • Cooper EC, Harrington E, Jan YN, Jan LY (2001) M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci 21: 9529–9540

    CAS  PubMed  Google Scholar 

  • Costa DC, Pilowsky LS, Ell PJ (1999) Nuclear medicine in neurology and psychiatry. Lancet 354: 1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58: 349–362

    Article  CAS  PubMed  Google Scholar 

  • Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1997) Action potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature 389: 286–289 [published erratum in Nature (1997) 390: 536]

    Article  CAS  PubMed  Google Scholar 

  • DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P (1994) Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods 54: 171–187

    Article  CAS  PubMed  Google Scholar 

  • Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflüger’s Arch 414: 600–612

    Article  CAS  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM et al (2000) Nomenclature of voltage-gated calcium channels. Neuron 25: 533–535

    Article  CAS  PubMed  Google Scholar 

  • Fass DM, Takimoto K, Mains RE, Levitan ES (1999) Tonic dopamine inhibition of L-type Ca2+ channel activity reduces alpha1D Ca2+ channel gene expression. J Neurosci 19: 3345–3352

    CAS  PubMed  Google Scholar 

  • Fernandez G, Effern A, Grunwald T et al (1999) Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science 285: 1582–1585

    Article  CAS  PubMed  Google Scholar 

  • Frankle WG, Laruelle M (2002) Neuroreceptor imaging in psychiatric disorders. Ann Nucl Med 16: 437–446

    Article  CAS  PubMed  Google Scholar 

  • Freedman R, Adams CE, Adler LE et al (2000) Inhibitory neurophysiological deficit as a phenotype for genetic investigation of schizophrenia. Am J Med Genet 97: 58–64

    Article  CAS  PubMed  Google Scholar 

  • Garrido JJ, Giraud P, Carlier E et al (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300: 2091–2094

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL, Barchi RL, Caldwell JH et al (2002) Nomenclature of voltagegated sodium channels. Neuron 28: 365–368

    Article  Google Scholar 

  • Grunwald T, Boutros NN, Pezer N, von Oertzen J, Fernandez G, Schaller C, Elger CE (2003) Neuronal substrates of sensory gating within the human brain. Biol Psychiatry 53: 511–519

    Article  PubMed  Google Scholar 

  • Hahn J, Tse TE, Levitan ES (2003) Long-term K+ channel-mediated dampening of dopamine neuron excitability by the antipsychotic drug haloperidol. J Neurosci 23: 10859–10866

    CAS  PubMed  Google Scholar 

  • Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290: 739–744

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) The components of membrane conductance in the giant axon of Loligo. J Physiol 116: 473–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffman DA, Johnston D (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18: 3521–3528

    CAS  PubMed  Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387: 869–875

    Article  CAS  PubMed  Google Scholar 

  • Holmgren CD, Zilberter Y (2001) Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells. J Neurosci 21: 8270–8277

    CAS  PubMed  Google Scholar 

  • Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58: 329–348

    Article  CAS  PubMed  Google Scholar 

  • Isom LL, De Jongh KS, Catterall WA (1994) Auxiliary subunits of voltagegated ion channels. Neuron 12: 1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev Neurosci 1: 21–30

    Article  CAS  Google Scholar 

  • Kim D, Song I, Keum S et al (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca2+ channels. Neuron 31: 35–45

    Article  CAS  PubMed  Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207: 203–205

    Article  CAS  PubMed  Google Scholar 

  • Lau D, Vega-Saenz de Miera EC, Contreras D et al (2000) Impaired fastspiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. J Neurosci 20: 9071–9085

    CAS  PubMed  Google Scholar 

  • Magee J, Hoffman D, Colbert C, Johnston D (1998) Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu Rev Physiol 60: 327–346

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268: 301–304

    Article  CAS  PubMed  Google Scholar 

  • Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ7 (1994) Detailed passive cable models of whole-cell recorded ca3 pyramidal neurons in rat hippocampal slices. J Neurosci 14: 4613–4638

    CAS  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215

    Article  CAS  PubMed  Google Scholar 

  • Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395: 900–905

    Article  CAS  PubMed  Google Scholar 

  • Martina M, Jonas P (1997) Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J Physiol 505: 593–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18: 8111–8125

    CAS  PubMed  Google Scholar 

  • McCormick DA, Pape H-C (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431: 291–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266:28–35

    Article  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez-Reyes E (1998) Molecular characterization of a novel family of low voltage-activated, T-type calcium channels. J Bioenerget Biomembr 30: 313–318

    Article  CAS  Google Scholar 

  • Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nature Neurosci 5: 767–774

    CAS  PubMed  Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system. Am Physiol Soc, Bethesda, pp 39–97

    Google Scholar 

  • Remy S, Gabriel S, Urban BW et al (2003) A novel mechanism underlying drug-resistance in chronic epilepsy. Ann Neurol 53: 469–479

    Article  CAS  PubMed  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65: 453–480

    Article  CAS  PubMed  Google Scholar 

  • Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66: 345–353

    Article  CAS  PubMed  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    Article  CAS  PubMed  Google Scholar 

  • Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H (2002) The Cav2.3 calcium channel subunit contributes to R-type calcium currents in murine hippocampal and neocortical neurones. J Physiol 542.3: 600–710

    Google Scholar 

  • Sokoloff L (1984) Modeling metabolic processes in the brain in vivo. Ann Neurol 15: S1–11

    Article  PubMed  Google Scholar 

  • Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol 67: 508–529

    CAS  PubMed  Google Scholar 

  • Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18: 3501–3510

    CAS  PubMed  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20: 125–131

    Article  CAS  PubMed  Google Scholar 

  • Su H, Alroy G, Kirson ED, Yaari Y (2001) Extracellular calcium modulates persistent sodium current-dependent intrinsic bursting in rat hippocampal neurons. J Neurosci 21: 4173–4182

    CAS  PubMed  Google Scholar 

  • Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, Beck H (2002) Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 22: 3645–3655

    CAS  PubMed  Google Scholar 

  • Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150: 1187–1188

    Article  CAS  PubMed  Google Scholar 

  • Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape H-C (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 15:3110–3117

    CAS  PubMed  Google Scholar 

  • Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8: 321–329

    Article  CAS  PubMed  Google Scholar 

  • Wang HS, Pan ZM, Shi WM et al (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282: 1890–1893

    Article  CAS  PubMed  Google Scholar 

  • Yaari Y, Hamon B, Lux HD (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235: 680–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mori M, Burgess DL, Noebels JL (2002) Mutations in high voltage-activated calcium channel genes stimulate low voltage-activated currents in mouse thalamic relay neurons. J Neurosci 22:6362–6371

    CAS  PubMed  Google Scholar 

  • Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399: 159–162

    Article  PubMed  Google Scholar 

  • Zschocke S (2000) Klinische Elektroenzephalographie, 2. Aufl. Springer, Berlin, Heidelberg, New York, S 697

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Beck, H. (2006). Neurophysiologische Grundlagen. In: Förstl, H., Hautzinger, M., Roth, G. (eds) Neurobiologie psychischer Störungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30887-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-30887-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25694-6

  • Online ISBN: 978-3-540-30887-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics