Skip to main content

Architektonik und funktionelle Neuroanatomie der Hirnrinde des Menschen

  • Chapter
Neurobiologie psychischer Störungen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aboitiz F, Garcia R (1997) The anatomy of language revisited. Biol Res 30: 171–183

    CAS  PubMed  Google Scholar 

  • Allison T, Begleiter A, McCarthy G, Roessler E, Nobre AC, Spencer DD (1993) Electrophysiological studies of color processing in human visual cortex. Electroencephalogr Clin Neurophysiol 88: 343–355

    Article  CAS  PubMed  Google Scholar 

  • Allison T, Ginter H, McCarthy G, Nobre AC, Puce A, Luby M, Spencer DD (1994) Face recognition in human extrastriate cortex. J Neurophysiol 71: 821–825

    CAS  PubMed  Google Scholar 

  • Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31: 85–105

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Zilles K (2001) Advances in cytoarchitectonic mapping of the human cerebral cortex. Neuroimaging Clin N Am 11: 151–169

    CAS  PubMed  Google Scholar 

  • Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE, Zilles K (1996) Asymmetry in the human motor cortex and handedness. NeuroImage 4: 216–222

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Schlaug G, Jäncke L, Steinmetz H, Schleicher A, Dabringhaus A, Zilles K (1997a) Motor cortex and hand motor skills: Structural compliance in the human brain. Hum Brain Mapping 5: 206–215

    Article  CAS  Google Scholar 

  • Amunts K, Schleicher A, Zilles K (1997b) Persistence of layer IV in the primary motor cortex (area 4) of children with cerebral palsy. J Brain Res 38: 247–260

    CAS  Google Scholar 

  • Amunts K, Schmidt-Passos F, Schleicher A, Zilles K (1997c) Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4. Anat Embryol 196: 393–402

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: Cytoarchitecture and intersubject variability. J Comp Neurol 412: 319–341

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K (2000a) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38: 304–312

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000b) Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage 11: 66–84

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Zilles K (2002) Architectonic mapping of the human cerebral cortex. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor & Francis, London, pp 29–52

    Chapter  Google Scholar 

  • Amunts K, Schleicher A, Ditterich A, Zilles K (2003) Broca’s region: Cytoarchitectonic asymmetry and developmental changes. J Comp Neurol 465: 72–89

    Article  PubMed  Google Scholar 

  • Andersen RA, Asanuma C, Essick G, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296: 65–113

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10: 1176–1196

    CAS  PubMed  Google Scholar 

  • Armstrong E, Zilles K, Schlaug G, Schleicher A (1986) Comparative aspects of the primate posterior cingulate cortex. J Comp Neurol 253: 539–548

    Article  CAS  PubMed  Google Scholar 

  • Armstrong E, Zilles K, Omran H, Schleicher A (1995) The ontogeny of human gyrification. Cereb Cortex 5: 56–63

    Article  CAS  PubMed  Google Scholar 

  • Bailey P, Bonin G von (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Baleydier C, Mauguire F (1980) The duality of the cingulate gyrus in monkey: Neuroanatomical study and functional hypothesis. Brain 103: 525–554

    Article  CAS  PubMed  Google Scholar 

  • Balint R (1909) Seelenlähmung des »Schauens«, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25: 51–81

    Article  Google Scholar 

  • Barbas H (1988) Anatomical organization of basoventral and mediodorsal visual recipient prefrontal region in the rhesus monkey. J Comp Neurol 276: 313–342

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, DeOlmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300: 549–571

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256: 211–228

    Article  CAS  PubMed  Google Scholar 

  • Barbur J, Watson J, Frackowiak R, Zeki S (1993) Conscious visual perception without V1. Brain 116: 1293–1302

    Article  PubMed  Google Scholar 

  • Batsch E-G (1956) Die myeloarchitektonische Untergliederung des Isocortex parietalis beim Menschen. J Hirnforsch 2: 225–258

    Google Scholar 

  • Beck ED (1928) Die myeloarchitektonische Felderung des in der Sylvischen Furche gelegenen Teiles des menschlichen Schläfenlappens. J Psychol Neurol 36: 1–21

    Google Scholar 

  • Beck ED (1930) Die Myeloarchitektonik der dorsalen Schläfenlappenrinde beim Menschen. J Psychol Neurol 41: 129–263

    Google Scholar 

  • Beckers G, Zeki S (1995) The consequences of inactivating areas V1 and V5 on visual motion perception. Brain 118: 49–60

    Article  PubMed  Google Scholar 

  • Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10: 536–540

    Article  CAS  PubMed  Google Scholar 

  • Benevento LA, Fallon JH (1975) The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J Comp Neurol 160: 339–362

    Article  CAS  PubMed  Google Scholar 

  • Benevento LA, Yoshida K (1981) The afferent and efferent organization of the lateral geniculo-prestriate pathways in the macaque monkey. J Comp Neurol 203: 455–474

    Article  CAS  PubMed  Google Scholar 

  • Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8: 727–749

    Article  CAS  PubMed  Google Scholar 

  • Bilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J (1998) Tonotopic organization of the human auditory cortex as detected by BOLDFMRI. Hear Res 126: 19–27

    Article  CAS  PubMed  Google Scholar 

  • Binder JR, Rao SM, Hammeke TA et al (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35: 662–672

    Article  CAS  PubMed  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund HJ (1999) A fronto-parietal circuit for object manipulation in man. Eur J Neurosci 11: 3276–3286

    Article  CAS  PubMed  Google Scholar 

  • Binkofski F, Amunts K, Stephan KM et al (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapping 11: 273–285

    Article  CAS  Google Scholar 

  • Blank SC, Scott SK, Warburton EA, Wise RJS (2002) Speech production: Wernicke, Broca and beyond. Brain 125: 1829–1838

    Article  PubMed  Google Scholar 

  • Blanke O, Landis T, Safran AB, Seeck M (2002) Direction-specific motion blindness induced by focal stimulation of human extrastriate cortex. Eur J Neurosci 15: 2043–2048

    Article  CAS  PubMed  Google Scholar 

  • Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299: 421–455

    Article  CAS  PubMed  Google Scholar 

  • Blinkov SM, Glezer I (1968) Das Zentralnervensystem in Zahlen und Tabellen. Fischer, Jena

    Google Scholar 

  • Bodegård A, Geyer S, Amunts K, Naito E, Zilles K, Roland PE (2000a) Somatosensory areas in man activated by moving stimuli. Cytoarchitectonic mapping and PET. NeuroReport 11: 187–191

    Article  PubMed  Google Scholar 

  • Bodegård A, Ledberg A, Geyer S, Naito E, Larsson J, Zilles K, Roland P (2000b) Object shape differences reflected by somatosensory cortical activation. J Neurosci 20: 1–5

    Google Scholar 

  • Bodegård A, Geyer S, Herath P, Grefkes C, Zilles K, Roland PE (2003) Somatosensory areas engaged during discrimination of steady pressure, spring strength and kinaesthesia. Hum Brain Mapping 20: 103–115

    Article  Google Scholar 

  • Bookheimer SY (2002) Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Ann Rev Neurosci 25: 151–188

    Article  CAS  PubMed  Google Scholar 

  • Booth JR, Burman DD, Meyer JR, Gitelman DR, Parrish TB, Mesulam MM (2002) Functional anatomy of intra-and cross-modal lexical tasks. NeuroImage 16: 7–22

    Article  PubMed  Google Scholar 

  • Born RT, Tootell RBH (1992) Segregation of global and local motion processing in primate middle temporal visual area. Nature 357: 497–499

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1972) Zur Pigmentarchitektonik der Großhirnrinde des Menschen. I. Regio entorhinalis. Z Zellforsch Mikrosk Anat 127: 407–438

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1976) A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain. Brain Res 109: 219–223

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1978) The pigment architecture of the human temporal lobe. Anat Embryol 154: 213–240

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1979) Pigment architecture of the human telencephalic cortex. IV. Regio retrosplenialis. Cell Tissue Res 204: 431–440

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Bradvik B, Dravins C, Holtas C, Rosen I, Ryding E, Ingvar DH (1991) Disturbances of speech prosody following right hemisphere infarcts. Acta Neurol Scand 84: 114–126

    Article  CAS  PubMed  Google Scholar 

  • Branche C, Milner B, Rasmussen T (1964) Intracarotid sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg 21: 399–405

    Article  Google Scholar 

  • Bremmer F, Duhamel JR, Hamed SB, Graf W (2000) Stages of self-motion processing in primate posterior parietal cortex. Int Rev Neurobiol 44: 173–198

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29: 287–296

    Article  CAS  PubMed  Google Scholar 

  • Broca MP (1861) Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bull Mem Soc Anat Paris 36: 330–357

    Google Scholar 

  • Brockhaus H (1940) Die Cyto-und Myeloarchitektonik des Cortex claustralis und des Claustrum beim Menschen. J Psychol Neurol 49: 249–348

    Google Scholar 

  • Brodal A (1969) Neurological anatomy in relation to clinical medicine, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Brodmann K (1908) Beiträge zur histologischen Lokalisation der Großhirnrinde. VI. Die Cortexgliederung des Menschen. J Psychol Neurol 10: 231–246

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1910) Feinere Anatomie des Großhirns. In: Lewandowsky M (Hrsg) Handbuch der Neurologie, Erster Band, Allgemeine Neurologie. Springer, Berlin, S 206–307

    Chapter  Google Scholar 

  • Brodmann K (1912) Neue Ergebnisse über die vergleichende histologische Lokalisation der Großhirnrinde mit besonderer Berücksichtigung des Stirnhirns. Anat Anz 41: 157–216

    Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. Neue Dtsch Chir 11: 85–426

    Google Scholar 

  • Buccino G, Binkofski F, Fink GR et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13: 400–404

    CAS  PubMed  Google Scholar 

  • Buckner RL, Corbetta M, Schatz J, Raichle ME, Petersen SE (1996) Preserved speech abilities and compensation following prefrontal damage. Proc Natl Acad Sci USA 93: 1249–1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bullier J, Schall JD, Morel A (1996) Functional streams in occipito-frontal connections in the monkey. Behav Brain Res 76: 89–97

    Article  CAS  PubMed  Google Scholar 

  • Burkhalter A, Bernardo KL (1989) Organization of cortico-cortical connections in human visual cortex. Proc Natl Acad Sci USA 86: 1071–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabeza R, Dolcos F, Graham R, Nyberg L (2002) Similarities and differences in the neural correlates of episodic memory retrieval and working memory. NeuroImage 16: 317–330

    Article  PubMed  Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, London

    Google Scholar 

  • Cavada C (2001) The visual parietal areas in the macaque monkey. Current structural knowledge and ignorance. NeuroImage 14: 21–26

    Article  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989a) Posterior parietal cortex in rhesus monkey. I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287: 393–421

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989b) Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287: 422–445

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1991) Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience 42: 683–696

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1993) Multiple visual areas in the posterior parietal cortex of primates. Prog Brain Res 95: 123–137

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10: 220–242

    Article  CAS  PubMed  Google Scholar 

  • Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12: 478–494

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Fujita H, Kanno I, Miura S, Tanaka K (1995) Human cortical regions activated by wide-field visual motion: An H2 15O PET study. J Neurophysiol 74: 413–427

    CAS  PubMed  Google Scholar 

  • Clarke S (1994a) Modular organization of human extrastriate visual cortex: Evidence from cytochrome oxidase pattern in normal and macular degeneration cases. Eur J Neurosci 6: 725–736

    Article  CAS  PubMed  Google Scholar 

  • Clarke S (1994b) Association and intrinsic connections of human extrastriate visual cortex. Proc R Soc Lond (Biol) 257: 87–92

    Article  CAS  Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298: 188–214

    Article  CAS  PubMed  Google Scholar 

  • Clarke S, Lindemann A, Maeder P, Borruat F-X, Assal G (1997) Face recognition and postero-inferior hemispheric lesions. Neuropsychologia 35: 1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel J-R (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29: 517–537

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22: 319–349

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study. J Comp Neurol 269: 392–413

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel J-R, Goldberg ME (1993) Ventral intraparietal area of the macaque: Anatomic location and visual response properties. J Neurophysiol 69: 902–914

    CAS  PubMed  Google Scholar 

  • Corballis MC (1997) The genetics and evolution of handedness. Psychol Rev 104: 714–727

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1990) Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248: 1556–1559

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discrimination of shape, color and speed: Functional anatomy by positron emission tomography. J Neurosci 11: 2383–2402

    CAS  PubMed  Google Scholar 

  • Cox SML, Andrade A, Johnsrude IS (2005) Learning to like: A role for human orbitofrontal cortex in conditioned reward. J Neurosci 25: 2733–2740

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeld O, Ojemann G, Lettich E (1989) Neuronal activity in the human lateral temporal lobe. I. Responses to speech. Exp Brain Res 77: 451–475

    Article  Google Scholar 

  • Dade LA, Jones-Gotman M, Zatorre RJ, Evans AC (1998) Human brain function during odor encoding and recognition. A PET activation study. Ann NY Acad Sci 855: 572–574

    Article  CAS  PubMed  Google Scholar 

  • Damasio A, Yamada T, Damasio H, Corbett J, McKee J (1980) Central achromatopsia: Behavioral, anatomical and physiological aspects. Neurology 30: 1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Dapretto M, Bookheimer SY (1999) Form and content: Dissociating syntax and semantics in sentence comprehension. Neuron 24: 427–432

    Article  CAS  PubMed  Google Scholar 

  • Decety J, Perani D, Jeannerod M et al (1994) Mapping motor representations with PET. Nature 371: 600–602

    Article  CAS  PubMed  Google Scholar 

  • Dejerine J (1895) Anatomie des centres nerveux. Rueff, Paris

    Google Scholar 

  • de Lacoste-Utamsing C, Holloway RL (1982) Sexual dimorphism in the human corpus callosum. Science 216: 1431–1432

    Article  Google Scholar 

  • Demonet JF, Chollet F, Ramsay S et al (1992) The anatomy of phonological and semantic processing in normal subjects. Brain 115: 1753–1768

    Article  PubMed  Google Scholar 

  • Desimone R, Schein SJ (1987) Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. J Neurophysiol 57: 835–868

    CAS  PubMed  Google Scholar 

  • Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 2. Elsevier, Amsterdam, pp 267–299

    Google Scholar 

  • DeYoe EA, Hockfield S, Garren H, van Essen DC (1990) Antibody labeling of functional subdivisions in visual cortex: CAT-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis Neurosci 5: 67–81

    Article  CAS  PubMed  Google Scholar 

  • DeYoe EA, Felleman DJ, van Essen DC, McClendon E (1994) Multiple processing streams in occipitotemporal visual cortex. Nature 371: 151–154

    Article  CAS  PubMed  Google Scholar 

  • Divac I, Björklund A, Lindvall O, Passingham RE (1978) Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species. J Comp Neurol 180: 59–72

    Article  CAS  PubMed  Google Scholar 

  • Driver J, Vuilleumier P, Eimer M, Rees G (2001) Functional magnetic resonance imaging and evoked potential correlates of conscious and unconcious vision in parietal extinction patients. NeuroImage 14: 68–75

    Article  Google Scholar 

  • Duhamel J-R, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389: 845–848

    Article  CAS  PubMed  Google Scholar 

  • Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72: 1420–1424

    CAS  PubMed  Google Scholar 

  • Economo C von, Horn L (1930) Über Windungsrelief, Massen und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und Seitenunterschiede. Z Ges Neurol Psychiatr 130: 678–755

    Article  Google Scholar 

  • Economo C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin

    Google Scholar 

  • Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE (2000) Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: A PET study. Eur J Neurosci 12: 3385–3398

    Article  CAS  PubMed  Google Scholar 

  • Eidelberg D, Galaburda AM (1984) Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. Arch Neurol 41: 843–852

    Article  CAS  PubMed  Google Scholar 

  • Elias H, Schwartz D (1969) Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166: 1011–1013

    Article  Google Scholar 

  • Engelien A, Yang Y, Engelien W, Zonana J, Stern E, Silbersweig DA (2002) Physiological mapping of human auditory cortices with a silent event-related fMRI technique. NeuroImage 16: 944–953

    Article  PubMed  Google Scholar 

  • Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1–47

    Article  CAS  PubMed  Google Scholar 

  • Filimonoff IN (1932) Über die Variabilität der Großhirnrindenstruktur. Mitteilung II — Regio occipitalis beim erwachsenen Menschen. J Psychol Neurol 44: 2–96

    Google Scholar 

  • Filimonoff IN (1947) A rational subdivision of the cerebral cortex. Arch Neurol Psychiatry 58: 296–311

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: Shared and specific neural domains. Brain 120: 2013–2028

    Article  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Shah NJ et al (2000a) Line bisection judgements implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54: 1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Weiss PH, Shah NJ, Toni I, Halligan PW, Zilles K (2000b) »Where« depends on »What«: A differential functional anatomy for position discrimination in one-versus two-dimensions. Neuropsychologia 38: 1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Driver J, Rorden C, Baldeweg T, Dolan RJ (2000c) Neural consequences of competing stimuli in both visual hemifields: A physiological basis for visual extinction. Ann Neurol 47: 440–446

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Gurd J, Weiss PH, Zafiris O, Shah NJ, Zilles K (2001a) Deriving numerosity and shape from identical visual displays. NeuroImage 13: 46–55

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Weiss PH, Zilles K (2001b) The neural basis of vertical and horizontal line bisection judgements: an fMRI study of normal volunteers. NeuroImage 14: 59–67

    Article  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Fletcher P, Happé F, Frith U, Baker SC, Dolan RJ, Frackowiak RS, Frith CD (1995) Other minds in the brain: A functional imaging study of »theory of mind« in story comprehension. Cognition 57: 109–128

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Ingham RJ, Ingham JC et al (1996) A PET study of the neural systems of stuttering. Nature 382: 158–162

    Article  CAS  PubMed  Google Scholar 

  • Frackowiak RSJ (1994) Functional mapping of verbal memory and language. Trends Neurosci 17: 109–115

    Article  CAS  PubMed  Google Scholar 

  • Freund H-J (1987) Abnormalities of motor behavior after cortical lesions in humans. In: Plum F (ed) Handbook of physiology, sect 1: The nervous system, vol V: Higher functions of the brain, part 2. Williams & Wilkins, Baltimore, pp 763–810

    Google Scholar 

  • Freund H-J (2001) The parietal lobe as a sensorimotor interface: A perspective from clinical and neuroimaging data. NeuroImage 14: 42–46

    Article  Google Scholar 

  • Friederici AD, Ruschemeyer SA, Hahne A, Fiebach CJ (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb Cortex 13: 170–177

    Article  PubMed  Google Scholar 

  • Frith CD, Frith U (1999) Interacting minds — A biological basis. Science 286: 1692–1695

    Article  CAS  PubMed  Google Scholar 

  • Frith CD, Friston K, Liddle PF, Frackowiak RSJ (1991) A PET study of word finding. Neuropsychologia 29: 1–12

    Article  Google Scholar 

  • Fujimaki N, Miyauchi S, Puetz B, Sasaki Y, Takino R, Sakai K, Tamada T (1999) Functional magnetic resonance imaging of neural activity related to orthographic, phonological, and lexico-semantic judgments of visually presented characters and words. Hum Brain Mapping 8: 44–59

    Article  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61: 331–349

    CAS  PubMed  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex, 2nd edn. Raven, New York

    Google Scholar 

  • Galaburda AM, Geschwind N (1981) Anatomical asymmetries in the adult and developing brain and their implications for function. Adv Pediatr 28: 271–292

    CAS  PubMed  Google Scholar 

  • Galaburda AM, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190: 597–610

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, Sanides F, Geschwind N (1978a) Human brain: Cytoarchitectonic left-right asymmetries in the temporal speech region. Arch Neurol 35: 812–817

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978b) Right-left asymmetries in the brain. Science 199: 852–856

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8: 30–52

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1997) The posterior parietal cortex in humans and monkeys. News Physiol Sci 12: 166–171

    Google Scholar 

  • Galletti C, Fattori P, Kutz DF, Gamberini M (1999) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11: 575–582

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Baldinotti I, Fattori P (2005) The relationship between V6 and PO in macaque extrastriate cortex. Eur J Neurosci 21: 959–970

    Article  PubMed  Google Scholar 

  • Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 123: 1293–1326

    Article  PubMed  Google Scholar 

  • Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49: 367

    Google Scholar 

  • Gerstmann J (1930) Zur Symptomatologie der Hirnläsionen im Übergangsgebiet der unteren Parietal-und mittleren Occipitalwindung. Nervenarzt 3: 691–695

    Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: Left-right asymmetries in the temporal speech region. Science 161: 186–187

    Article  CAS  PubMed  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174: 1–92

    Article  CAS  Google Scholar 

  • Geyer S, Zilles K (2005) Functional neuroanatomy of human motor cortex. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. Oxford University Press, Oxford, pp 3–22

    Google Scholar 

  • Geyer S, Ledberg A, Schleicher A et al (1996) Two different areas within the primary motor cortex of man. Nature 382: 805–807

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: Cytoarchitecture and regional distributions of receptor-binding sites. NeuroImage 6: 27–45

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Matelli M, Luppino G, Schleicher A, Jansen Y, Palomero-Gallagher N, Zilles K (1998) Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey. J Comp Neurol 397: 231–250

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural organization and interindividual variability. NeuroImage 10: 63–83

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Zilles K, Luppino G, Matelli M (2000a) Neurofilament protein distribution in the macaque monkey dorsolateral premotor cortex. Eur J Neurosci 12: 1554–1566

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Schormann T, Mohlberg H, Zilles K (2000b) Areas 3a, 3b, and 1 of human primary somatosensory cortex. 2. Spatial normalization to standard anatomical space. NeuroImage 11: 684–696

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Matelli M, Luppino G, Zilles K (2000c) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol 202: 443–474

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1984) Modular organization of prefrontal cortex. Trends Neurosci 7: 419–424

    Article  Google Scholar 

  • Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projections to the frontal lobe. J Comp Neurol 242: 535–560

    Article  CAS  PubMed  Google Scholar 

  • Grabowski TJ, Damasio AR (2000) Investigating language with functional neuroimaging. In: Toga AW, Mazziotta JC (eds) Brain mapping — the systems. Academic Press, San Diego, pp 425–458

    Chapter  Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112: 103–111

    Article  CAS  PubMed  Google Scholar 

  • Graziano MSA, Andersen RA, Snowden RJ (1994) Tuning of MST neurons to spiral motion. J Neurosci 14: 54–67

    CAS  PubMed  Google Scholar 

  • Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: Observer-independent cytoarchitectonic mapping, interindividual variability, and population map. NeuroImage 14: 617–631

    Article  CAS  PubMed  Google Scholar 

  • Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study strongly implies equivalencies between humans and monkey. Neuron 35: 173–184

    Article  CAS  PubMed  Google Scholar 

  • Gulyás B, Roland PE (1991) Cortical fields participating in form and colour discrimination in the human brain. Neuroreport 2: 585–588

    Article  PubMed  Google Scholar 

  • Gulyás B, Roland PE (1994) Processing and analysis of form, colour and binocular disparity in the human brain: Functional anatomy by positron emission tomography. Eur J Neurosci 6: 1811–1828

    Article  PubMed  Google Scholar 

  • Gurd JM, Amunts K, Weiss PH, Zafiris O, Zilles K, Marshall JC, Fink GR (2002) Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain 125: 1024–1038

    Article  PubMed  Google Scholar 

  • Halgren E, Baudena P, Heit G, Clarke M, Marinkovic K (1994) Spatio-temporal stages in face and word processing. 1. Depth-recorded potentials in the human occipital and parietal lobes. J Physiol 88: 1–50

    CAS  Google Scholar 

  • Hari R, Hamalainen M, Ilmoniemi R et al (1984) Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci Lett 50: 127–132

    Article  CAS  PubMed  Google Scholar 

  • Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14: 6336–6353

    CAS  PubMed  Google Scholar 

  • Haxby JV, Ungerleider LG, Horwitz B, Rapoport SI, Grady CL (1995) Hemispheric differences in neural systems for face working memory: a PET-rCBF study. Hum Brain Mapping 3: 68–82

    Article  Google Scholar 

  • Heeger DJ, Boynton GM, Demb JB, Seidemann E, Newsome WT (1999) Motion opponency in visual cortex. J Neurosci 19: 7162–7174

    CAS  PubMed  Google Scholar 

  • Hellige JB (2001) Cerebral hemisphere asymmetry: what’s right and what’s left. Harvard University Press, Cambridge

    Google Scholar 

  • Hendry SHC, Hockfield S, Jones EG, McKay R (1984) Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat. Nature 307: 267–269

    Article  CAS  PubMed  Google Scholar 

  • Hendry SHC, Jones EG, Hockfield S, McKay RDG (1988) Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus. J Neurosci 8: 518–542

    CAS  PubMed  Google Scholar 

  • Herholz K, Thiel A, Pietrzyk U et al (1996) Individual functional anatomy of verb generation. NeuroImage 3: 185–194

    Article  CAS  PubMed  Google Scholar 

  • Heywood CA, Gaffan D, Cowey A (1995) Cerebral achromatopsia in monkeys. Eur J Neurosci 7: 1064–1073

    Article  CAS  PubMed  Google Scholar 

  • Hinke RM, Hu X, Stillman AE, Kim SG, Merkle H, Salmi R, Ugurbil K (1993) Functional magnetic resonance imaging of Broca’s area during internal speech. Cogn Neurosci Neuropsych 4(6): 675–678

    CAS  Google Scholar 

  • Hirano S, Kojima H, Naito Y et al (1996) Cortical speech processing mechanisms while vocalizing visually presented language. Neuroreport 8: 363–367

    Article  CAS  PubMed  Google Scholar 

  • Hockfield S, Tootell RBH, Zaremba S (1990) Molecular differences among neurons reveal an organization of human visual cortex. Proc Natl Acad Sci USA 87: 3027–3031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopf A (1954) Die Myeloarchitektonik des Isocortex temporalis beim Menschen. J Hirnforsch 1: 208–279

    Google Scholar 

  • Hopf A (1955) Über die Verteilung myeloarchitektonischer Merkmale in der isokortikalen Schläfenlappenrinde beim Menschen. J Hirnforsch 2: 36–54

    Google Scholar 

  • Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2: 311–333

    CAS  PubMed  Google Scholar 

  • Horwitz B, Amunts K, Bhattacharyya R, Patkin D, Jeffries J, Zilles K, Braun AR (2003) Activation of Broca’s area during the production of spoken and signed language: A combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41: 1868–1876

    Article  PubMed  Google Scholar 

  • Howard MA, Patterson K, Wise R, Brown WD, Friston K, Weiller C, Frackowiak RSJ (1992) The cortical localization of the lexicons: Positron emission tomography evidence. Brain 115: 1769–1782

    Article  PubMed  Google Scholar 

  • Howard MA, Volkov IO, Abbas PJ, Damasio H, Ollendieck MC, Granner MA (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res 724: 260–264

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195: 215–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1969) Anatomical demonstration of columns in the monkey striate cortex. Nature 221: 747–750

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146: 421–450

    Article  CAS  PubMed  Google Scholar 

  • Huk AC, Heeger DJ (2002) Pattern-motion responses in human visual cortex. Nature Neurosci 5: 72–75

    Article  CAS  PubMed  Google Scholar 

  • Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22: 7195–7205

    CAS  PubMed  Google Scholar 

  • Hyvärinen H (1982) The parietal cortex of monkey and man. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286: 2526–2528

    Article  CAS  PubMed  Google Scholar 

  • Indefrey P, Brown CM, Hellwig F, Amunts K, Herzog H, Seitz RJ, Hagoort P (2001) A neural correlate of syntactic encoding during speech production. Proc Natl Acad Sci USA 98: 5933–5936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue K, Kawashima R, Sugiura M, Ogawa A, Schormann T, Zilles K, Fukuda H (2001) Activation in the ipsilateral posterior parietal cortex during a tool use: A PET study. NeuroImage 14: 1469–1475

    Article  CAS  PubMed  Google Scholar 

  • Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 871–914

    Chapter  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 14: 103–109

    Article  Google Scholar 

  • Jeannerod M, Arbib M, Rizzolatti G, Sakata H (1995) Grasping objects: The cortical mechanisms of visuomotor transformation. Trends Neurosci 18: 314–320

    Article  CAS  PubMed  Google Scholar 

  • Johnsrude IS, Morosan P, Brett M, Zilles K, Frackowiak RSJ (2000) Functional specialization within three cytoarchitectonically defined primary auditory cortical areas in humans. Soc Neurosci Abstr 26: S1971

    Google Scholar 

  • Jones EG, Porter R (1980) What is area 3a? Brain Res Rev 2: 1–43

    Article  Google Scholar 

  • Kaada B (1960) Cingulate, posterior orbital, anterior insular and temporal pole cortex. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology, sect 1, vol II. American Physiological Society, Washington, pp 1345–1372

    Google Scholar 

  • Kaas JH (2004) Somatosensory system. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 1059–1092

    Chapter  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (2001) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17: 4302–4311

    Google Scholar 

  • Kim KHS, Relkin NR, Lee K-M, Hirsch J (1997) Distinct cortical areas associated with native and second languages. Nature 388: 171–174

    Article  CAS  PubMed  Google Scholar 

  • Kononova EP (1935) Structural variability of the cortex cerebri. Inferior frontal gyrus in adults (in Russian). In: Sarkisov SA, Filimonov IN (eds) Annals of the Brain Research Institute, vol I. State Press for Biological and Medical Literature, Moscow Leningrad, pp 49–118

    Google Scholar 

  • Kononova EP (1949) The frontal lobe (in Russian). In: Sarkisov SA, Filimonov IN, Preobrashenskaya NS (eds) The cytoarchitecture of the human cortex cerebri. Medgiz, Moscow, pp 309–343

    Google Scholar 

  • Koski L, Wohlschläger A, Bekkering H, Woods RP, Dubeau M-C, Mazziotta JC, Iacoboni M (2002) Modulation of motor and premotor activity during imitation of target-directed actions. Cereb Cortex 14: 847–855

    Article  Google Scholar 

  • Krams M, Rushworth MFS, Deiber M-P, Frackowiak RSJ, Passingham RE (1998) The preparation, execution and suppression of copied movements in the human brain. Exp Brain Res 120: 386–398

    Article  CAS  PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15: 185–234

    Article  PubMed  Google Scholar 

  • Kuypers HJM (1958) Cortico-bulbar connections to the pons and lower brain stem in man. Brain 81: 364–388

    Article  CAS  PubMed  Google Scholar 

  • Langner G, Sams M, Heil P, Schulze H (1997) Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. J Comp Physiol (A) 181: 665–676

    Article  CAS  Google Scholar 

  • Larsson J, Amunts K, Gulyás B, Malikovic A, Zilles K, Roland PE (1999) Neuronal correlates of real and illusory contour perception: functional anatomy with PET. Eur J Neurosci 11: 4024–4036

    Article  CAS  PubMed  Google Scholar 

  • Lauter JL (1992) Processing asymmetries for complex sounds: comparisons between behavioral ear advantages and electrophysiological asymmetries based on quantitative electroencephalography. Brain Cogn 19: 1–20

    Article  CAS  PubMed  Google Scholar 

  • Lauter JL, Herscovitch P, Formby C, Raichle ME (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20: 199–205

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan D, Turner R, Zeffiro TA, Cuénod CA, Jezzard P, Bonnerot V (1993) Activation of human primary visual cortex during visual recall: A magnetic resonance imaging study. Proc Natl Acad Sci USA 90: 11802–11805

    Article  PubMed Central  PubMed  Google Scholar 

  • Liegeois Chauvel C, Musolino A, Chauvel P (1991) Localization of the primary auditory area in man. Brain 114: 139–151

    PubMed  Google Scholar 

  • Liegeois Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92: 204–214

    Article  CAS  PubMed  Google Scholar 

  • Lu M-T, Preston JR, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341: 375–392

    Article  CAS  PubMed  Google Scholar 

  • Lueck CJ, Zeki S, Friston KJ et al (1989) The colour centre in the cerebral cortex of man. Nature 340: 386–389

    Article  CAS  PubMed  Google Scholar 

  • Lungwitz W (1937) Zur myeloarchitektonischen Untergliederung der menschlichen Area praeoccipitalis (Area 19 Brodmann). J Psychol Neurol 47: 607–638

    Google Scholar 

  • Luppino G, Matelli M, Camarda RM, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey. J Comp Neurol 311: 463–482

    Article  CAS  PubMed  Google Scholar 

  • Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338: 114–140

    Article  CAS  PubMed  Google Scholar 

  • Luppino G, Matelli M, Camarda R, Rizzolatti G (1994) Corticospinal projections from mesial frontal and cingulate areas in the monkey. Neuroreport 5: 2545–2548

    Article  CAS  PubMed  Google Scholar 

  • Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128: 181–187

    Article  CAS  PubMed  Google Scholar 

  • Luria AR (1959) Disorders of «simultaneous perception» in a case of bilateral occipitoparietal brain injury. Brain 82: 437–449

    Article  CAS  PubMed  Google Scholar 

  • Lux S, Marshall JC, Ritzl A et al (2004) A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields. Neuroscience 124: 113–120

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Haxby JV, Lalonde FM, Wiggs CL, Ungerleider LG (1995) Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270: 102–105

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G (1996) Thalamic input to mesial and superior area 6 in the macaque monkey. J Comp Neurol 372: 59–87

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G (2001) Parietofrontal circuits for action and space perception. NeuroImage 14: 27–32

    Article  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18: 125–136

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251: 281–298

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280: 468–488

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311: 445–462

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Covoni P, Galletti C, Kutz DF, Luppino G (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402: 327–352

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Geyer S, Zilles K (2004) Motor cortex. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 975–996

    Google Scholar 

  • Maunsell JHR, van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey I: Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49: 1127–1147

    CAS  PubMed  Google Scholar 

  • Maunsell JHR, van Essen DC (1987) Topographic organization of the middle temporal visual area in the macaque monkey. I: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. J Comp Neurol 266: 535–555

    Article  CAS  PubMed  Google Scholar 

  • Mazoyer BM, Tzourio N, Frak V et al (1993) The cortical representation of speech. J Cogn Neurosci 5: 467–479

    Article  CAS  PubMed  Google Scholar 

  • Mazziotta JC, Metter EJ (1988) Brain cerebral metabolic mapping of normal and abnormal language and its acquisition during development. Res Publ Assoc Res Nerv Ment Dis 66: 245–266

    CAS  PubMed  Google Scholar 

  • Mazziotta JC, Phelps ME, Carson RE, Kuhl DE (1982) Tomographic mapping of human cerebral metabolism: Auditory stimulation. Neurology 32: 921–937

    Article  CAS  PubMed  Google Scholar 

  • Mazziotta J, Toga A, Evans A et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond (Biol) 356: 1293–1322

    Article  CAS  Google Scholar 

  • McGuire PK, Bates JF, Goldmann-Rakic PS (1991) Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and right principal sulcus (PS) and the left and right supplementary motor area (SMA) in the rhesus monkey. Cereb Cortex 1: 390–407

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M (1998) From sensation to cognition. Brain 121: 1013–1052

    Article  PubMed  Google Scholar 

  • Mesulam M-M, Mufson EJ (1982) Insula of the old world monkey. III. Efferent cortical output and comments of function. J Comp Neurol 212: 38–52

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M, Mufson EJ (1985) The insula of Reil in man and monkey. Architectonics, connectivity, and function. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Plenum, New York, pp 179–226

    Google Scholar 

  • Milner B, Petrides M (1984) Behavioural effects of frontal lobe lesions in man. Trends Neurosci 7: 403–407

    Article  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object and spatial vision: Two cortical pathways. Trends Neurosci 6: 414–417

    Article  Google Scholar 

  • Moll J, de Oliveira-Souza R, Bramati IE, Grafman J (2002) Functional networks in emotional moral and nonmoral social judgements. NeuroImage 16: 696–703

    Article  PubMed  Google Scholar 

  • Moniz E (1936) Tentatives opératoires dans le traitement de certaines psychoses. Masson, Paris

    Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13: 684–701

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Mesulam MM (1982) Insula of the old world monkey. II. Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23–37

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE (1999) Illusory arm movements activate cortical motor areas: A positron emission tomography study. J Neurosci 19: 6134–6144

    CAS  PubMed  Google Scholar 

  • Naito E, Kinomura S, Geyer S, Kawashima R, Roland PE, Zilles K (2000) Fast reaction to different sensory modalities activate common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. J Neurophysiol 83: 1701–1709

    CAS  PubMed  Google Scholar 

  • Nakamura K, Kawashima R, Sato N et al (2000) Functional delineation of the human occipito-temporal areas related to familiar scene processing. Brain 123: 1903–1912

    Article  PubMed  Google Scholar 

  • Ngowyang G (1932) Die Zytoarchitektonik der Felder des Gyrus rectus. J Psychol Neurol 44: 475–493

    Google Scholar 

  • Ngowyang G (1934) Die Zytoarchitektonik des menschlichen Stirnhirns. Natl Res Inst Psychol Sinica 7: 1

    Google Scholar 

  • Nichelli P, Grafman J, Pietrini P, Clark K, Lee KY, Miletich R (1995) Where the brain appreciates the moral of a story. Neuroreport 6: 2309–2313

    Article  CAS  PubMed  Google Scholar 

  • Nicholls ME (1998) Support for a structural model of aural asymmetries. Cortex 34: 99–110

    Article  CAS  PubMed  Google Scholar 

  • Nishitani N, Schürmann M, Amunts K, Hari R (2005) Broca’s region: From action to language. Physiology 20: 60–69

    Article  PubMed  Google Scholar 

  • Nobre AC, Allison T, McCarthy G (1994) Word recognition in the human inferior temporal lobe. Nature 372: 260–263

    Article  CAS  PubMed  Google Scholar 

  • Ojemann GA, Creutzfeld OD, Lettich E (1987) Neuronal activity in human temporal cortex related to naming and short-term verbal memory. In: Engel J Jr, Ojemann GA, Lüders HO, Williamson PD (eds) Fundamental mechanisms of human brain function. Raven, New York, pp 61–68

    Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: Effect of sex and age. J Comp Neurol 384: 312–320

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN (1995) Anatomy of the auditory cortex. Rev Neurol (Paris) 151: 486–494

    CAS  PubMed  Google Scholar 

  • Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13: 13–36

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN, Seltzer B (1982a) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204: 196–210

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN, Seltzer B (1982b) Association areas of the cerebral cortex. Trends Neurosci 5: 386–390

    Article  Google Scholar 

  • Pandya DN, Yeterian E (1998) Comparison of prefrontal architecture and connections. In: Roberts AC, Robbins TW, Weiskrantz L (eds) The prefrontal cortex. Oxford University Press, Oxford, pp 51–66

    Chapter  Google Scholar 

  • Pandya DN, Van Hoesen GW, Mesulam MM (1981) Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42: 319–330

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G, Elbert T (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94: 26–40

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Ross B, Berg P, Elbert T, Rockstroh B (1998a) Study of the human auditory cortices using a whole-head magnetometer: left vs. right hemisphere and ipsilateral vs. contralateral stimulation. Audiol Neurootol 3: 183–190

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998b) Increased auditory cortical representation in musicians. Nature 392: 811–814

    Article  CAS  PubMed  Google Scholar 

  • Parsons LM, Fox PT (1998) The neural basis of implicit movements used in recognizing hand shape. Cogn Neuropsychol 15: 583–615

    Google Scholar 

  • Parsons LM, Fox PT, Downs JH et al (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375: 54–58

    Article  CAS  PubMed  Google Scholar 

  • Pasik P, Pasik T (1982) Visual functions in monkeys after total removal of visual cerebral cortex. Contrib Sensor Physiol 7: 147–200

    Article  Google Scholar 

  • Passingham RE, Toni I (2001) Contrasting the dorsal and ventral visual systems: Guidance of movement versus decision making. NeuroImage 14: 125–131

    Article  Google Scholar 

  • Paul F (1971) Biometrische Analyse der Volumina des Prosencephalon und der Großhirnrinde von 31 menschlichen Gehirnen. Z Anat Entwicklungsgesch 133: 325–368

    Article  CAS  PubMed  Google Scholar 

  • Paulesu E, Frith U, Snowling M, Gallagher A, Morton J, Frackowiak RSJ, Frith CD (1996) Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain 119: 143–157

    Article  PubMed  Google Scholar 

  • Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. J Neurophysiol 70: 453–469

    CAS  PubMed  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New York

    Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintum M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331: 585–589

    Article  CAS  PubMed  Google Scholar 

  • Petersen SE, Fox PT, Snyder AZ, Raichle ME (1990) Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science 249: 1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya D (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228: 105–116

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya D (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Petrides M, Pandya D (1999) Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11: 1011–1036

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya D (2002) Comparative cytoarchitectonic analysis in the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns. Eur J Neurosci 16: 291–310

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya D (2004) The frontal cortex. In: Paxinos G, Mai J (eds) The human nervous system. Elsevier, Amsterdam, pp 950–972

    Chapter  Google Scholar 

  • Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90: 878–882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16: 331–348

    Article  PubMed  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: A review of their location and functional activation. Cereb Cortex 6: 342–353

    Article  CAS  PubMed  Google Scholar 

  • Pigache RM (1970) The anatomy of »Paleocortex«. A critical review. Erg Anat Entwicklungsgesch 43: 1–62

    Google Scholar 

  • Poeppel D, Yellin E, Phillips C, Roberts TP, Rowley HA, Wexler K, Marantz A (1996) Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds. Brain Res Cogn Brain Res 4: 231–242

    Article  CAS  PubMed  Google Scholar 

  • Powell TPS, Cowan WM, Raisman G (1965) The central olfactory connexions. J Anat 99: 791–813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: Alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer IVA. Cereb Cortex 12: 671–691

    Article  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1989) Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J Comp Neurol 282: 293–316

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1990) Myelo-and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310: 439–474

    Google Scholar 

  • Price CJ (1998) The functional anatomy of word comprehension and production. Trends Cogn Sci 2: 281–288

    Article  CAS  PubMed  Google Scholar 

  • Price G, Giraud AL (2001) The constraints of functional neuroimaging places on classical models of auditory word processing. J Cogn Neurosci 13: 754–765

    Article  PubMed  Google Scholar 

  • Price JL (2004) Olfaction. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 1197–1211

    Chapter  Google Scholar 

  • Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 74: 1192–1199

    CAS  PubMed  Google Scholar 

  • Qureshy A, Kawashima R, Imran MB et al (2000) Functional mapping of human brain in olfactory processing: A PET study. J Neurophysiol 84: 1656–1666

    CAS  PubMed  Google Scholar 

  • Rabinowicz T (1967) Quantitative appraisal of the cerebral cortex of the premature infant of 8 months. In: Minkowsky AA (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 92–118

    Google Scholar 

  • Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS Jr (1992) Human cerebral cortex: Localization, parcellation and morphometry with magnetic resonance imaging. J Cogn Neurosci 4: 352–374

    Article  CAS  PubMed  Google Scholar 

  • Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: Implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3: 313–329

    Article  CAS  PubMed  Google Scholar 

  • Rademacher J, Morosan P, Schleicher A, Freund H-J, Zilles K (2001a) Human primary auditory cortex in women and men. NeuroReport 12: 1561–1565

    Article  CAS  PubMed  Google Scholar 

  • Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H-J, Zilles K (2001b) Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13: 669–683

    Article  CAS  PubMed  Google Scholar 

  • Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, Zilles K (2001c) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124: 2232–2258

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Goldman-Rakic PS (1995a) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex 5: 307–322

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Goldman-Rakic PS (1995b) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach coordinate system. Cereb Cortex 5: 323–337

    Article  CAS  PubMed  Google Scholar 

  • Rakic P, Suñer I, Williams RW (1991) A novel cytoarchitectonic area induced experimentally within the primate visualcortex. Proc Natl Acad Sci USA 88: 2083–2087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22: 74–80

    Article  CAS  PubMed  Google Scholar 

  • Reite M, Adams M, Simon J, Teale P, Sheeder J, Richardson D, Grabbe R (1994) Auditory M100 component 1: relationship to Heschl’s gyri. Brain Res Cogn Brain Res 2: 13–20

    Article  CAS  PubMed  Google Scholar 

  • Richman DP, Stewart RM, Hutchinson JW, Caviness VS (1975) Mechanical model of brain convolutional development. Science 189: 18–21

    Article  Google Scholar 

  • Riegele L (1931) Die Cytoarchitektonik der Felder der Brocaschen Regionen. J Physiol Neurol 42: 496–514

    Google Scholar 

  • Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6: 288–304

    Article  CAS  PubMed  Google Scholar 

  • Rizzo M, Nawrot M, Blake R, Damasio A (1992) A human visual disorder resembling area V4 dysfunction in the monkey. Neurology 42: 1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996a) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3: 131–141

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996b) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111: 246–252

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (1997) Parietal cortex: From sight to action. Curr Opin Neurobiol 7: 562–567

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: New concepts. Electroencephalogr Clin Neurophysiol 106: 283–296

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev Neurosci 2: 661–670

    Article  CAS  Google Scholar 

  • Roland PE (1984) Metabolic measurement of the working frontal cortex in man. Trends Neurosci 7: 430–435

    Article  Google Scholar 

  • Roland PE (1993) Brain activation. Wiley-Liss, New York

    Google Scholar 

  • Roland PE, Zilles K (1994) Brain atlases — A new research tool. Trends Neurosci 17: 458–467

    Article  CAS  PubMed  Google Scholar 

  • Roland PE, Zilles K (1996a) Functions and structures of the motor cortices in humans. Curr Opin Neurobiol 6: 773–781

    Article  CAS  PubMed  Google Scholar 

  • Roland PE, Zilles K (1996b) The developing European Computerized Human Brain Database for all imaging modalities. NeuroImage 4: 39–47

    Article  Google Scholar 

  • Roland PE, Zilles K (1998) Structural divisions and functional fields in the human cerebral cortex. Brain Res Rev 26: 87–105

    Article  CAS  PubMed  Google Scholar 

  • Roland PE, Eriksson L, Stone-Elander S, Widén L (1987) Does mental activity change the oxidative metabolism of the brain. J Neurosci 7: 2373–2389

    CAS  PubMed  Google Scholar 

  • Roland PE, Geyer S, Amunts K, Schormann T, Schleicher A, Malikovic A, Zilles K (1997) Cytoarchitectural maps of the human brain in standard anatomical space. Hum Brain Mapping 5: 222–227

    Article  CAS  Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216: 1339–1340

    Article  CAS  PubMed  Google Scholar 

  • Rose M (1926) Über das histogenetische Prinzip der Einteilung der Großhirnrinde. J Physiol Neurol 32: 97–160

    Google Scholar 

  • Rose M (1927) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des »Allocortex bei Tier und Mensch«. J Psychol Neurol 34: 261–401

    Google Scholar 

  • Rose M (1928) Gyrus limbicus antior und Regio retrosplenialis (Cortex holorotoptychos quinquenstraficatus). Vergleichende Architektonik bei Tier und Mensch. J Psychol Neurol 35: 65–173

    Google Scholar 

  • Rose M (1929) Die Inselrinde des Menschen und der Tiere. J Psychol Neurol 37: 467–624

    Google Scholar 

  • Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315–317

    Article  CAS  PubMed  Google Scholar 

  • Royet JP, Hudry J, Zald DH et al (2001) Functional neuroanatomy of different olfactory judgments. NeuroImage 13: 506–519

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Watanabe E, Onodera Y et al (1995) Functional mapping of the human color centre with echo-planar magnetic resonance imaging. Proc R Soc Lond B Biol Sci 261: 89–98

    Article  CAS  Google Scholar 

  • Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5: 429–438

    Article  CAS  PubMed  Google Scholar 

  • Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20: 350–357

    Article  CAS  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj T, Edelman RR, Warach S (1995) Shared neural substrates controlling hand movements in human motor cortex. Science 268: 1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Sanides F, Vitzthum H (1965a) Die Grenzerscheinungen am Rande der menschlichen Sehrinde. Dtsch Z Nervenheilkd 187: 708–719

    Article  Google Scholar 

  • Sanides F, Vitzhum HG (1965b) Zur Architektonik der menschlichen Sehrinde und den Prinzipien ihrer Entwicklung. Dtsch Z Nervenheilkd 187: 680–707

    Article  Google Scholar 

  • Sarkissov SA, Filimonoff IN, Kononowa EP, Preobrachenskaja IS, Kukuew LA (1955) Atlas of the cytoarchitectonics of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science 251: 947–950

    Article  CAS  PubMed  Google Scholar 

  • Schiller PH, Lee K (1991) The role of the primate extrastriate area V4 in vision. Science 251: 1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: Software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneitis in nervous tissue. J Neurosci Methods 18: 221–235

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observerindependent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics. NeuroImage 9: 165–177

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1990) Anatomical investigations of projections from thalamus to posterior parietal cortex in the rhesus monkey: A WGA-HRP and fluorescent tracer study. J Comp Neurol 295: 299–326

    Article  CAS  PubMed  Google Scholar 

  • Schmid N, Tschopp K, Schillinger C, Bilecen D, Scheffler K, Seelig J (1998) Visualization of central auditory processes with functional magnetic resonance tomography. Laryngorhinootologie 77: 328–331

    Article  CAS  PubMed  Google Scholar 

  • Schürmann M, Hesse MD, Stephan KE, Saarela M, Zilles K, Hari R, Fink GR (2005) Yearning to yawn: The neural basis of contagious yawning. NeuroImage 24: 1260–1264

    Article  PubMed  Google Scholar 

  • Schwartz ML, Goldman-Rakic PS (1984) Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex. J Comp Neurol 226: 403–420

    Article  CAS  PubMed  Google Scholar 

  • Schwartz ML, Goldman-Rakic PS (1988) Periodicity of GABA-containing cells in primate prefrontal cortex. J Neurosci 8: 1962–1970

    CAS  PubMed  Google Scholar 

  • Seldon HL (1981) Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions. Brain Res 229: 277–294

    Article  CAS  PubMed  Google Scholar 

  • Selemon DL, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of cortico-striatal projections in the rhesus monkey. J Neurosci 5: 776–794

    CAS  PubMed  Google Scholar 

  • Selemon DL, Goldman-Rakic PS (1988) Common cortical and subcortical target areas of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8: 4049–4068

    CAS  PubMed  Google Scholar 

  • Seltzer B, Pandya DN (1980) Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey. Brain Res 192: 339–351

    Article  CAS  PubMed  Google Scholar 

  • Seltzer B, Pandya DN (1984) Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res 55: 301–312

    Article  CAS  PubMed  Google Scholar 

  • Seltzer B, Pandya DN (1986) Posterior parietal projections to the intraparietal sulcus of the rhesus monkey. Exp Brain Res 62: 459–469

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: A comparative study of area 10. Am J Phys Anthropol 114: 221–241

    Article  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB et al (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268: 889–893

    Article  CAS  PubMed  Google Scholar 

  • Sergent J, Zuck E, Levesque M, MacDonald B (1992) Positron emission tomography study of letter and object processing: empirical findings and methodological considerations. Cereb Cortex 2: 68–80

    Article  CAS  PubMed  Google Scholar 

  • Simic G, Bexheti S, Kelovic Z, Kos M, Grbic K, Hof PR, Kostovic I (2005) Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 130: 911–925

    Article  CAS  PubMed  Google Scholar 

  • Sirigu A, Cohen L, Duhamel JR, Pillon B, Dubois B, Agid Y (1995) A selective impairment of hand posture for object utilization in apraxia. Cortex 31: 41–55

    Article  CAS  PubMed  Google Scholar 

  • Skullerud K (1985) Variations in the size of the human brain. Acta Neurol Scand 71: 1–94

    Google Scholar 

  • Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S, Petrides M (1999) Human cortical gustatory areas: A review of functional neuroimaging data. NeuroReport 10: 7–14

    Article  CAS  PubMed  Google Scholar 

  • Smith GE (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat 41: 237–254

    CAS  Google Scholar 

  • Sobel N, Prabhakaran V, Zhao Z, Desmond JE, Glover GH, Sullivan EV, Gabrieli JDE (2000) Time course of odorant-induced activation in the human primary olfactory cortex. J Neurophysiol 83: 537–551

    CAS  PubMed  Google Scholar 

  • Springer SP, Deutsch G (1998) Left brain/right brain: perspectives from cognitive neuroscience. Freeman, New York

    Google Scholar 

  • Steinmetz H, Rademacher J, Huang YX, Hefter H, Zilles K, Thron A, Freund HJ (1989) Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr 13: 996–1005

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz H, Volkmann J, Jäncke L, Freund H-J (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left-and right-handers. Ann Neurol 29: 315–319

    Article  CAS  PubMed  Google Scholar 

  • Stengel E (1930) Morphologische und cytoarchitektonische Studien über den Bau der unteren Frontalwindung bei Normalen und Taubstummen. Ihre individuellen und Seitenunterschiede. Z Ges Neurol Psychiatr 130: 630–677

    Article  Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 4, Teil 9. Springer, Berlin Heidelberg New York, S 1–998

    Google Scholar 

  • Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes entail lateralized task control in the human brain. Science 301: 384–386

    Article  CAS  PubMed  Google Scholar 

  • Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RSJ (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73: 373–386

    CAS  PubMed  Google Scholar 

  • Strainer JC, Ulmer JL, Yetkin FZ, Haughton VM, Daniels DL, Millen SJ (1997) Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. Am J Neuroradiol 18: 601–610

    CAS  PubMed  Google Scholar 

  • Strasburger EH (1937) Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen. J Psychol Neurol 47: 461,565

    Google Scholar 

  • Strasburger EH (1938) Vergleichende myeloarchitektonische Studien an der erweiterten Brocaschen Region des Menschen. J Psychol Neurol 48: 477–511

    Google Scholar 

  • Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Talavage TM, Edmister WB, Ledden PJ, Weisskoff RM (1999) Quantitative assessment of auditory cortex responses induced by imager acoustic noise. Hum Brain Mapping 7: 79–88

    Article  CAS  Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251–268

    Article  CAS  PubMed  Google Scholar 

  • Tanji J, Shima K (1994) Role for supplementary motor area cells in planning several movements ahead. Nature 371: 413–416

    Article  CAS  PubMed  Google Scholar 

  • Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Naatanen R (1993) Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology 30: 537–540

    Article  CAS  PubMed  Google Scholar 

  • Toni I, Thoenissen D, Zilles K (2001) Movement preparation and motor intention. NeuroImage 14: 110–117

    Article  Google Scholar 

  • Tootell RBH, Taylor JB (1995) Anatomical evidence for MT and additional cortical visual areas in humans. Cereb Cortex 5: 39–55

    Article  CAS  PubMed  Google Scholar 

  • Tootell RBH, Reppas JB, Kwong KK et al (1995a) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15: 3215–3230

    CAS  PubMed  Google Scholar 

  • Tootell RBH, Reppas JB, Dale AM et al (1995b) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375: 139–141

    Article  CAS  PubMed  Google Scholar 

  • Tootell RBH, Mendola JD, Hadjikhani NK et al (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17: 7060–7078

    CAS  PubMed  Google Scholar 

  • Tootell RBH, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998) From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2: 174–183

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Jacobson S (1976) Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey. J Comp Neurol 169: 371–392

    Article  CAS  PubMed  Google Scholar 

  • Tyler HR (1968) Abnormalities of perception with defective eye movements (Balint’s syndrome). Cortex 4: 154–171

    Article  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248: 190–222

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) «What» and «where» in the human brain. Curr Opin Neurobiol 4: 157–165

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Uylings HBM, Malofeeva LI, Bogolepova IN, Amunts K, Zilles K (1999) Broca’s language area from a neuroanatomical and developmental perspective. In: Brown CM, Hagoort P (eds) Neurocognition of language. Oxford University Press, Oxford, pp 319–336

    Google Scholar 

  • Vallar G (1998) Spatial hemineglect in humans. Trends Cogn Sci 2: 87–97

    Article  CAS  PubMed  Google Scholar 

  • Vallar G (2001) Extrapersonal visual unilateral spatial neglect and its neuroanatomy. NeuroImage 14: 52–58

    Article  Google Scholar 

  • van Essen DC (1979) Visual areas of the mammalian cerebral cortex. Annu Rev Neurosci 2: 227–263

    Article  PubMed  Google Scholar 

  • van Essen DC, Zeki SM (1978) The topographic organization of rhesus monkey prestriate cortex. J Physiol 277: 193–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Essen DC, Maunsell JHR, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199: 293–326

    Article  PubMed  Google Scholar 

  • van Essen DC, Newsome WT, Bixby JL (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J Neurosci 2: 265–283

    PubMed  Google Scholar 

  • van Essen DC, Newsome WT, Maunsell JHR, Bixby JL (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries and patchy condensations. J Comp Neurol 244: 451–480

    Article  PubMed  Google Scholar 

  • Van Hoesen GW, Morecraft RJ, Vogt BA (1993) Connections of the monkey cingulate cortex. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 249–284

    Chapter  Google Scholar 

  • Verkindt C, Bertrand O, Perrin F, Echallier JF, Pernier J (1995) Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalogr Clin Neurophysiol 96: 143–156

    Article  CAS  PubMed  Google Scholar 

  • Vogt O (1910) Die myeloarchitektonische Felderung des menschlichen Stirnhirns. J Psychol Neurol 15: 221

    Google Scholar 

  • Vogt O (1911) Die Myeloarchitektonik des Isocortex parietalis. J Psychol Neurol 18: 379–390

    Google Scholar 

  • Vogt BA (1993) Structural organization of cingulate cortex: Areas, neurons, and somatodendritic transmitter receptors. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 14–70

    Chapter  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeine Ergebnisse unserer Hirnforschung. J Psychol Neurol 25: 279–262

    Google Scholar 

  • Vogt C, Vogt O (1926) Die vergleichend-architektonische und die vergleichend-reizphysiologische Felderung der Großhirnrinde unter besonderer Berücksichtigung der menschlichen. Naturwissenschaften 14: 1190–1194

    Article  Google Scholar 

  • Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: Surface features, flat maps, and cytoarchitecture. J Comp Neurol 359: 490–506

    Article  CAS  PubMed  Google Scholar 

  • Vogt BA, Vogt LJ, Perl DP, Hof PR (2001) Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438: 353–376

    Article  CAS  PubMed  Google Scholar 

  • Vogt BA, Hof RP, Vogt LJ (2004) Cingulate gyrus. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 915–949

    Chapter  Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73: 59–86

    Article  Google Scholar 

  • Walsh V, Carden D, Butler SR, Kulikowski JJ (1993) The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy. Behav Brain Res 53: 51–62

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Myers R, Frackowiak RS et al (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3: 79–94

    Article  CAS  PubMed  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of the inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4: 471–483

    Article  Google Scholar 

  • Weiss PH, Marshall JC, Wunderlich G et al (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 123: 2531–2541

    Article  PubMed  Google Scholar 

  • Wernicke C (1874) Der aphasische Symptomenkomplex. Springer, Berlin

    Google Scholar 

  • White IM, Wise P (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126: 315–335

    Article  CAS  PubMed  Google Scholar 

  • Wise R, Chollet F, Hadar U, Friston K, Hoffner E, Frackowiak RSJ (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114: 1803–1817

    Article  PubMed  Google Scholar 

  • Witelson SF (1985) The brain connection: The corpus callosum is larger in left-handers. Science 229: 665–668

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours A-R (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Yamamoto T, Uemura T, Llinas R (1992) Tonotopic organization of human auditory cortex revealed by multi-channel SQUID system. Acta Otolaryngol (Stockh) 112: 201–204

    Article  CAS  PubMed  Google Scholar 

  • Yeterian EH, Pandya DN (1985) Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J Comp Neurol 237: 408–426

    Article  CAS  PubMed  Google Scholar 

  • Yeterian EH, Pandya DN (1993) Striatal connections of the parietal association cortices in rhesus monkey. J Comp Neurol 332: 175–197

    Article  CAS  PubMed  Google Scholar 

  • Young JP, Geyer S, Grefkes C, Amunts K, Morosan P, Zilles K, Roland PE (2003) Regional cerebral blood flow correlations of somatosensory areas 3a, 3b, 1, and 2 in humans during rest: A PET and cytoarchitectural study. Hum Brain Mapping 19: 183–196

    Article  Google Scholar 

  • Young JP, Herath P, Eickhoff S, Choi H-J, Grefkes C, Zilles K, Roland PE (2004) Somatotopy and attentional modulation of the human parietal and opercular regions. J Neurosci 24: 5391–5399

    Article  CAS  PubMed  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120: 141–157

    Article  PubMed  Google Scholar 

  • Yukie M, Iwai E (1981) Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys. J Comp Neurol 201: 81–97

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14: 1908–1919

    CAS  PubMed  Google Scholar 

  • Zatorre RJ, Meyer E, Gjedde A, Evans AC (1996) PET studies of phonetic processing of speech: review, replication, and reanalysis. Cereb Cortex 6: 21–30

    Article  CAS  PubMed  Google Scholar 

  • Zeki SM (1980) The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex. Proc R Soc Lond B Biol Sci 207: 239–248

    Article  CAS  PubMed  Google Scholar 

  • Zeki SM (1990a) Parallelism and functional specialization in human visual cortex. Cold Spring Harbor Symp Quant Biol 55: 651–661

    Article  CAS  PubMed  Google Scholar 

  • Zeki SM (1990b) A century of cerebral achromatopsia. Brain 113: 1721–1777

    Article  PubMed  Google Scholar 

  • Zeki SM (1991) Cerebral akinetopsia (visual motion blindness). A review. Brain 114: 811–824

    Article  PubMed  Google Scholar 

  • Zeki SM (1993) A vision of the brain. Blackwell, Oxford

    Google Scholar 

  • Zeki SM, Shipp S (1988) The functional logic of cortical connections. Nature 335: 311–317

    Article  CAS  PubMed  Google Scholar 

  • Zeki SM, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RSJ (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11: 641–649

    CAS  PubMed  Google Scholar 

  • Zeki SM, Watson JD, Frackowiak RSJ (1993) Going beyond the information given: The relation of illusory visual motion to brain activity. Proc R Soc Lond B Biol Sci 252: 215–222

    Article  CAS  Google Scholar 

  • Zihl J, Cramon D von, Mai N, Schmid C (1991) Disturbance of movement vision after bilateral posterior brain damage. Further evidence and follow up observations. Brain 114: 2235–2252

    Article  PubMed  Google Scholar 

  • Zilles K (1972) Biometrische Analyse der Frischvolumina verschiedener prosencephaler Hirnregionen von 78 menschlichen, adulten Gehirnen. Gegenbaurs Morphol Jahrb 118: 234–273

    CAS  PubMed  Google Scholar 

  • Zilles K (2004) Architecture of the human cerebral cortex: Regional and laminar organization. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 997–1055

    Chapter  Google Scholar 

  • Zilles K, Clarke S (1997) Architecture, connectivity and transmitter receptors of human extrastriate visual cortex: Comparison with nonhuman primates. In: Kaas JH, Rockland KS, Peters A (eds) Cerebral cortex, vol 12, Extrastriate cortex in primates. Plenum, New York, pp 673–742

    Chapter  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-and receptor architectonics of the human parietal cortex. NeuroImage 14: 8–20

    Article  Google Scholar 

  • Zilles K, Schleicher A (1993) Cyto-and myeloarchitecture of human visual cortex and the periodical GABAA receptor distribution. In: Gulyás B, Ottoson D, Roland P (eds) Functional organization of the human visual cortex. Pergamon, Oxford, pp 111–121

    Chapter  Google Scholar 

  • Zilles K, Stephan H, Schleicher A (1982) Quantitative architectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum, New York, pp 177–201

    Chapter  Google Scholar 

  • Zilles K, Werners R, Büsching U, Schleicher A (1986a) Ontogenesis of the laminar structure in areas 17 and 18 of the human visual cortex. A quantitative study. Anat Embryol 174: 339–353

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Armstrong E, Schlaug G, Schleicher A (1986b) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253: 514–524

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretschmann H-J (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol 179: 173–179

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1989) Gyrification in the cerebral cortex of primates. Brain Behav Evol 34: 143–150

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Schlaug G, Matelli M et al (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187: 515–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zilles K, Schlaug G, Geyer S et al (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70: 29–43

    CAS  PubMed  Google Scholar 

  • Zilles K, Schleicher A, Langemann C et al (1997) Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Mapping 5: 218–221

    Article  CAS  Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002a) Quantitative analysis of cyto-and receptorarchitecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: The methods, 2nd edn. Academic Press, San Diego, pp 573–602

    Chapter  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002b) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: Reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12: 587–599

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Eickhoff S, Palomero-Gallagher N (2003) The human parietal cortex: a novel approach to its architectonical mapping. Adv Neurol 93: 1–20

    PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat 205: 217–232

    Article  Google Scholar 

  • Zouridakis G, Simos PG, Papanicolaou AC (1998) Multiple bilaterally asymmetric cortical sources account for the auditory N1m component. Brain Topogr 10: 183–189

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Zilles, K. (2006). Architektonik und funktionelle Neuroanatomie der Hirnrinde des Menschen. In: Förstl, H., Hautzinger, M., Roth, G. (eds) Neurobiologie psychischer Störungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30887-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-30887-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25694-6

  • Online ISBN: 978-3-540-30887-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics