Skip to main content

Funktionell-neuroanatomische un neuropathologische Grundlagen psychischer Erkrankungen

  • Chapter
Psychiatrie und Psychotherapie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE, Jones EG (1996) Maldistribution of interstitial neurons in the prefrontal white matter of the brains of schizophrenics. Arch Gen Psychiatry 53:425–436

    CAS  PubMed  Google Scholar 

  • Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154:1010–1012

    CAS  PubMed  Google Scholar 

  • Aldenhoff J (1997) Ãœberlegungen zur Psychobiologie der Depression. Nervenarzt 68:379–389

    Article  CAS  PubMed  Google Scholar 

  • Allin M, Murray R (2002) Schizophrenia: a neurodevelopmental or neurodegenerative disorder. Curr Opin Psychiatry 15:9–15

    Article  Google Scholar 

  • Amato T, Rochet T, Dalery J, Chauchat JH, Martin JP, Marie-Cardine M (1994) Seasonality of birth and ventricular enlargement in chronic schizophrenia. Psychiatry Res (Neuroimaging) 55:65–73

    Google Scholar 

  • Arnold SE, Hyman BT, van Hösen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    CAS  PubMed  Google Scholar 

  • Bachus SE, Kleinman JE (1996) The neuropathology of schizophrenia. J Clin Psychiatry 57(Suppl 11):72–83

    PubMed  Google Scholar 

  • Bauer J (1994) Die Alzheimer-Krankheit. Schattauer, Stuttart

    Google Scholar 

  • Baumann B, Bogerts B (2001) Neuroanatomical studies on bipolar disorders. Br J Psychiatry Suppl 41:142–147

    Google Scholar 

  • Baumann B, Bornschlegl C, Krell D, Bogerts B (1997) Changes in CSF spaces differ in endogenous and neurotic depression. A planimetric CT scan study. J Affect Dis 45:179–188

    CAS  PubMed  Google Scholar 

  • Baumann B, Bielau H, Krell D et al. (2002) Circumscribed numerical deficit of dorsal raphe neurons in mood disorders. Psychol Med 32:93–103

    CAS  PubMed  Google Scholar 

  • Baumann B, Danos P, Diekmann S et al. (1999a) Tyrosine hydroxylase immunoreactivity in the locus coeruleus is reduced in depressed non-suicidal patients but normal in depressed suicide patients. Eur Arch Psychiatr Clin Neurosci 249:212–219

    CAS  Google Scholar 

  • Baumann B, Danos P, Krell D et al. (1999b) Unipolar-bipolar dichotomy of mood disorders is supported by noradrenergic brainstem system morphology. J Affect Disorders 54:217–224

    CAS  PubMed  Google Scholar 

  • Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 52:1015–1018

    CAS  PubMed  Google Scholar 

  • Benes FM, Bird ED (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiat 44:608–616

    CAS  PubMed  Google Scholar 

  • Bernstein H-G, Krell D, Baumann B et al. (1998a) Morphometric and immunohistochemical studies of the entorhinal cortex in neuropsychiatric patients and controls: Clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33:125–132

    Article  CAS  PubMed  Google Scholar 

  • Bernstein H-G, Stanarius A, Baumann B, Henning H, Krell D, Falkai P, Bogerts B (1998b) Nitric oxide synthase containing neurons in the human hypothalamus: Reduced number of immunoreactive cells in the nucleus paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    Article  CAS  PubMed  Google Scholar 

  • Bernstein H-G, Krell D, Emrich H et al. (2002) Fewer beta-endorphin expressing arcuate nucleus neurons and reduced betaendorphinergic innervation of paraventricular neurons in schizophrenics and patients with depression. Cell Mol Biol (in press)

    Google Scholar 

  • Bertolino A, Esposito G, Callicott JH et al. (2000) Specific relationship between prefrontal neuronal N-acetylaspartrate and activation of the working memory cortical network in schizophrenia. Am J Psychiatry 157:26–33

    CAS  PubMed  Google Scholar 

  • Bilder RM, Wu H, Bogerts B, Degreef G, Ashtari M, Alvier JM, Snyder P, Lieberman J (1994) Absence of regional hemispheric volume asymmetries in first episode schizophrenia. Am J Psychiatry 151:1437–1447

    CAS  PubMed  Google Scholar 

  • Bilder RM, Wu H, Bogerts B et al. (1999) Cerebral volume asymmetries in schizophrenia and mood disorders: a quantitative magnetic resonance imaging study. Int J Psychophysiol 34:197–205

    Article  CAS  PubMed  Google Scholar 

  • Bogerts B (1996) Plastizität von Hirnstruktur und-funktion als neurobiologische Grundlage der Psychotherapie. Z Klin Psychol Psychopathol Psychother 44:243–252

    CAS  Google Scholar 

  • Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophrenia Bull 23:423–435

    CAS  Google Scholar 

  • Bogerts B (1999) The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur Arch Psychiatry Clin Neurosci 249(Suppl):2–13

    PubMed  Google Scholar 

  • Bogerts B (2002) Bedeutung des Frontalhirns für die Pathophysiologie schizophrener Erkrankungen. In: Förstl H (Hrsg) Das Frontalhirn — Funktionen und Erkrankungen. Springer, Berlin Heidelberg New York Tokio, S181–205

    Google Scholar 

  • Bogerts B, Lieberman J (1993) Neuropathology in the study of psychiatric disease. In: Costa e Silva ACJ, Nadelson CC (eds) International review of psychiatry, vol 1. American Psychiatric Press, Washington, pp 515–555

    Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Braun K, Bogerts B (2001) Experience guided neuronal plasticity. Significance for pathogenesis and therapy of psychiatric diseases. Nervenarzt 72:3–10

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–117

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD, Vythilingam M, Vermetten E et al. (2002) Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51:273–279

    Article  PubMed  Google Scholar 

  • Cannon TD, Mednick SA, Parnas J, Schulsinger F, Praestholm J, Vestergaard A (1993) Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contribution of genetic and perinatal factors. Arch Gen Psychiatry 50:551–564

    CAS  PubMed  Google Scholar 

  • Chakos MH, Lieberman JA, Bilder RM et al. (1994) Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 151:1430–1436

    CAS  PubMed  Google Scholar 

  • Cotter D, Mackay D, Landau S, Kerwin R, Everall J (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    CAS  PubMed  Google Scholar 

  • Crow TJ (1990) Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr Bull 16,3:434–443

    Google Scholar 

  • Crow TJ (1993) Schizophrenia as an anomaly of cerebral asymmetry. In: Maurer K (ed) Imaging of the brain in psychiatry and related fields. Springer, Berlin Heidelberg New York Tokyo, pp 2–17

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of the brain stem neurons. Acta Physiol Scand 62(Suppl 232):1–55

    Google Scholar 

  • Danos P, Baumann B, Bernstein H-G (1998) Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamo-cortical projection neurons. Psychiatr Res Neuroimaging 82:1–10

    CAS  Google Scholar 

  • Davison K, Bagley CR (1969) Schizophrenia-like psychosis associated with organic disorders of the central nervous system. A review of the literature. In: Hertington RN (ed) Current problems in neuropsychiatry. Br J Psychiatry Special Publication No. 4:113–187

    Google Scholar 

  • De Bellis MD, Clark DB, Beers SR et al. (2000) Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry 157:737–744

    PubMed  Google Scholar 

  • Degreef G, Bogerts B, Falkai P, Greve B, Lantos G, Ashtari M, Lieberman J (1992a) Increased prevalence of the cavum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatry Res (Neuroimaging) 45:1–13

    CAS  Google Scholar 

  • Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DN, Alvir JMJ, Lieberman JA (1992b) Volumes of ventricular system subdivisions measured from magnetic resonance images in first episode schizophrenic patients. Arch Gen Psychiatry 49:531–537

    CAS  PubMed  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988a) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Biol Psychiatry 24:515–521

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Bogerts B, Roberts GW, Crow TJ (1988b) Measurement of the alpha-cell-migration in the entorhinal region: a marker for developmental disturbances in schizophrenia? Schizophr Res 1:157–158

    Google Scholar 

  • Falkai P, Schneider T, Greve B, Klieser E, Bogerts B (1995) Reduced frontal and occipital lobe asymmetry on CT-scans of schizophrenic patiens. Its specifity and clinical significance. J Neural Transm Gen Sect 99:63–77

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Honert WG, David B, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brain of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25:48–53

    Article  CAS  PubMed  Google Scholar 

  • Fields DR, Nelson PG (1992) Activity dependent development of the vertebrate nervous system. In: Bradley R (ed) International review of neurobiology, vol 43. Academic Press, New York, pp 133–214

    Google Scholar 

  • Flor-Henry P (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10:363–395

    CAS  PubMed  Google Scholar 

  • Frölich L, Hoyer S (2002) Zur ätiologischen und pathogenetischen Heterogenität der Alzheimer-Krankheit. Nervenarzt 73:422–427

    PubMed  Google Scholar 

  • Geddes JR, Lawrie S (1995) Obstetric complications and schizophrenia. A meta-analysis. Br J Psychiatry 167:786–793

    CAS  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specifity. Arch Gen Psychiatry 54:943–952

    CAS  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic P (1994) Cerebral cortical mechanisms in schizophrenia. Neuropsychopharmacol 10(Suppl 3):22–27

    Google Scholar 

  • Grasby PM, Bench C (1997) Neuroimaging of mood disorders. Curr Opin Psychiatry 10:73–78

    Article  Google Scholar 

  • Gray JA (1982) The neuropsychology of anxiety: An enquiry into the function of the septo-hippocampal system. Oxford University Press, Oxford

    Google Scholar 

  • Greenwood R, Bhalla A, Gordon A, Roberts J (1983) Behavior disturbances during recovery from herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 46:809–817

    CAS  PubMed  Google Scholar 

  • Gur RE, Cowell P, Turetsky BI, Cannon T, Bilker W, Gur RC (1998) A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 55(2):145–152

    CAS  PubMed  Google Scholar 

  • Gur RE, Cowell PE, Latshaw A et al. (2000a) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57:761–768

    CAS  PubMed  Google Scholar 

  • Gur RE, Turetsky BI, Cowell PE et al. (2000b) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57:769–775

    CAS  PubMed  Google Scholar 

  • Hampel H, Teipel SJ, Kötter HU, Horwitz B, Pfluger T, Mager T, Möller HJ, Müller-Spahn F (1997) Strukturelle Magnetresonanztomographie in der Diagnose und Erforschung der Demenz vom Alzheimer-Typ. Nervenarzt 68:365–378

    Article  CAS  PubMed  Google Scholar 

  • Harper CG, Krill JJ, Holloway (1985) Brain shrinkage in chronic alcoholics: A pathological study. Br Med J 290:501–504

    CAS  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624

    Article  PubMed  Google Scholar 

  • Harvey I, Ron MA, Du Boulay G, Wicks SW, Lewis SW, Murray RM (1993) Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol Med 23:591–604

    CAS  PubMed  Google Scholar 

  • Heinsen H, Gössmann E, Rüb U et al. (1996) Variability in the human entorhinal region may confound neuropsychiatric diagnoses. Acta Anatomica 157:226–237

    CAS  PubMed  Google Scholar 

  • Herrmann M, Bartels C, Wallesch CW (1993) Depression in acute and chronic aphasia: symptoms, pathoanatomical-clinical correaltions and functional implications. J Neurol Neurosurg Psychiatry 56:672–678

    CAS  PubMed  Google Scholar 

  • Hess WR (1949) Das Zwischenhirn. Schwabe, Basel

    Google Scholar 

  • Hillbom E (1951) Schizophrenia-like psychoses after brain trauma. Acta Psychiat Neurol Scand 60:36–47

    Google Scholar 

  • Huber G (1961) Chronische Schizophrenie. Synopsis klinischer und neuroradiologischer Untersuchungen an defektschizophrenen Anstaltspatienten. Einzeldarstellungen aus der theoretischen und klinischen Medizin, Bd 13. Hüthig, Heidelberg

    Google Scholar 

  • Ibrahim HM, Hogg AJ, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Jonotropic glutamat receptor binding and subunit mRNA expression in thalamic nuclei of schizophrenia. Am J Psychiatry 157:1811–1823

    Article  CAS  PubMed  Google Scholar 

  • Jakob J, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transmiss 65:303–326

    CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2:924–926

    CAS  PubMed  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    CAS  PubMed  Google Scholar 

  • Katsetos CD, Hyde TM, Herman MM (1997) Neuropathology of the cerebellum in Schizophrenia — An Update: 1996 and future directions. Biol Psychiatry 42:213–224

    Article  CAS  PubMed  Google Scholar 

  • Ketter TA, George MS, Kimbrell TA, Benson BE, Post RM (1996) Functional brain imaging, limbic function and affective disorders. Neuroscientist 2:55–65

    Google Scholar 

  • Kozlovsky N, Belmaker RH, Agam G (2000) Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 157(5):831–833

    Article  CAS  PubMed  Google Scholar 

  • Lawrie SM, Abukmeil SS (1998) Brain asbnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120 (Review)

    CAS  PubMed  Google Scholar 

  • Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: evidence for reduced thickness of periventricular grey matter. Eur Arch Psychiatr Neurol Sci 234:212–219

    Article  CAS  Google Scholar 

  • Lewis DA, Pierry JN, Volk DW, Melchitzky DS, Woo TUW (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46:616–626

    Article  CAS  PubMed  Google Scholar 

  • Mann K, Widmann U (1995) Zur Neurobiologie der Alkoholabhängigkeit. Fortschr Neurol Psychiatrie 63:238–247

    CAS  Google Scholar 

  • Marsh L, Suddath RL, Higgins N, Weinberger DR (1994) Medial temporal lobe structures in schizophrenia: Relationship of size to duration of illness. Schizophr Res 11:225–238

    Article  CAS  PubMed  Google Scholar 

  • Maurer K, Riederer P, Beckmann H (eds) (1990) Alzheimer’s disease. Epidemiology, neuropathology, neurochemistry, and clinics. Springer, Wien New York

    Google Scholar 

  • McCarley RW, Hsiao JK, Freedman R, Pfefferbaum A, Donchin E (1996) Neuroimaging and the cognitive neuroscience of schizophrenia. Schizophr Bull 22:703–725

    CAS  PubMed  Google Scholar 

  • McLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4:407–418

    Google Scholar 

  • McNeil TF, Cantor-Graae E, Weinberger DR (2000) Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157:203–212

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1986) Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (ed) Principles of behavioral neurology. Davis, Philadelphia, pp 1–70

    Google Scholar 

  • Miller EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22:15–17

    CAS  PubMed  Google Scholar 

  • Millner R (1992) Cortico-hippocampal interplay and the representation of contexts in the brain. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Narr KL, Thompson PM, Sharma T et al. (2001) Three-dimensional mapping of temporolimbic regions and the lateral ventricle in schizophrenia: gender effects. Biol Psychiatry 50:84–97

    Article  CAS  PubMed  Google Scholar 

  • Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by Magnetic Resonance Imaging. Arch Gen Psychiatry 55:433–440

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the Brain. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Northoff G, Waters H, Mooren I, Schlüter U, Diekmann S, Falka P, Bogerts B (1999) Cortical sulcal enlargement in catatonic schizophrenia: a planimetric CT study. Psychiatry Res 91:45–54

    CAS  PubMed  Google Scholar 

  • Os J van, Fahy A, Jones P et al. (1995) Increased intracerebral cerebrospinal fluid spaces predict unemployment and negative symptoms in psychotic illness — a prospective study. Br J Psychiatry 166:750–758

    PubMed  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028

    CAS  PubMed  Google Scholar 

  • Palkovits M, Zaborski L (1979) Neural connections of the hypothalamus. In: Morgane PJ (ed) Anatomy of the hypothalamus. Decker, New York, pp 379–509

    Google Scholar 

  • Pantel J, Schröder J, Schad LR et al. (1997) Quantitative magnetic resonance imaging and neuropsychological functions in dementia of the Alzheimer type. Psychol Med 27:221–229

    Article  CAS  PubMed  Google Scholar 

  • Perez MM, Trimble MR, Reider I, Murray M (1984) Epileptic psychosis, a further evaluation of PSE profiles. Br J Psychiatry 146:155–163

    Google Scholar 

  • Pierry JN, Chaudry AS, Woo TUW, Lewis DA (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 156:1709–1719

    Google Scholar 

  • Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    CAS  PubMed  Google Scholar 

  • Raz S (1993) Structural cerebral pathology in schizophrenia: Regional or diffuse? J Abnorm Psychol 102:445–452

    Article  CAS  PubMed  Google Scholar 

  • Roth G (1991) Neuronale Grundlagen des Lernens und des Gedächtnisses. In: Schmidt JS (Hrsg) Gedächtnis: Probleme und Perspektiven der interdisziplinären Gedächtnisforschung. Suhrkamp, Frankfurt S 127–158

    Google Scholar 

  • Schlaepfer TE, Harris GJ, Tien AY et al. (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151:842–848

    CAS  PubMed  Google Scholar 

  • Selemon LD, Godman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25

    Article  CAS  PubMed  Google Scholar 

  • Slater E, Beard AW, Glithero E (1963) The schizophrenia-like psychosis of epilepsy. Br J Psychiatry 109:95–150

    CAS  PubMed  Google Scholar 

  • Soares JC, Mann JJ (1997) The anatomy of mood disorders. Biol Psychiatry 41:86–106

    Article  CAS  PubMed  Google Scholar 

  • Staal WG, Hulshoff-Pol HE, Schnack H, Schot AC, Kahn RS (1998) Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am J Psychiatry 155(12):1784–1786

    CAS  PubMed  Google Scholar 

  • Swanson LW (1983) The hippocampus and the concept of limbic system. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, London, pp 3–19

    Google Scholar 

  • Szeszko PR, Strous RD, Goldman RS, Ashtari M, Knuth KH, Lieberman JA, Bilder RM (2002) Neuropsycholgical correlates of hippocampal volumes in patients experiencing a first episode of schizophrenia. Am J Psychiatry 159:217–226

    Article  PubMed  Google Scholar 

  • Victor M, Adams RD, Collins G (1989) The Wernicke-Korsakow Syndrome and related neurologic disorders due to alcoholism and malnutrition. Davis, Philadelphia

    Google Scholar 

  • Vogeley K, Schneider-Axmann T, Pfeiffer U et al. (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157:34–39

    CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    CAS  PubMed  Google Scholar 

  • Wernicke C (1881) Lehrbuch der Gehirnkrankheiten für Ärzte und Studierende, Bd 2. Fischer, Kassel S 229–242

    Google Scholar 

  • Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154:1013–1015

    CAS  PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are seletively altered in schizophrenia. Proc Natl Acad Sci USA 93:5341–5346

    Google Scholar 

  • Woods BT (1998) Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 155:1661–1670

    CAS  PubMed  Google Scholar 

  • Wright IC, Rabe-Hesketh SR, Woodruff PWR, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–25

    CAS  PubMed  Google Scholar 

  • Wurthmann C, Bogerts B, Falkai P (1995) Brain morphology assessed by computed tomography in patients with geriatric depression, patients with degenerative dementia, and normal control subjects. Psychiatry Res (Neuroimaging) 61:103–111

    CAS  Google Scholar 

  • Wurthmann C, Gregor J, Baumann B, Schwarz A, Effenberger O, Doehring W, Bogerts B (1999) Prefrontal enlargement of CSF spaces in agoraphobia: a qualitative CT-scan study. Prog Neuropsychopharmacol Biol Psychiatry 23:823–830

    Article  CAS  PubMed  Google Scholar 

  • Young KA, Manaye KF, Liang CL, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953

    Article  CAS  PubMed  Google Scholar 

  • Zipurski RB, Marsh L, Lim KO et al. (1994) Volumetric assessment of temporal lobe structures in schizophrenia. Biol Psychiatry 35:501–516

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Bogerts, B. (2003). Funktionell-neuroanatomische un neuropathologische Grundlagen psychischer Erkrankungen. In: Möller, HJ., Laux, G., Kapfhammer, HP. (eds) Psychiatrie und Psychotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27386-7_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-27386-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25074-6

  • Online ISBN: 978-3-540-27386-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics