Skip to main content

Phylogenomics and Molecular Evolution of Polyomaviruses

  • Chapter
Polyomaviruses and Human Diseases

Abstract

We provide in this chapter an overview of the basic steps to reconstruct evolutionary relationships through standard phylogeny estimation approaches as well as network approaches for sequences more closely related. We discuss the importance of sequence alignment, selecting models of evolution, and confidence assessment in phylogenetic inference. We also introduce the reader to a variety of software packages used for such studies. Finally, we demonstrate these approaches throughout using a data set of 33 whole genomes of polyomaviruses. A robust phylogeny of these genomes is estimated and phylogenetic relationships among the polyomaviruses determined using Bayesian and maximum likelihood approaches. Furthermore, population samples of SV40 are used to demonstrate the utility of network approaches for closely related sequences. The phylogenetic analysis suggested a close relationship among the BK viruses, JC viruses, and SV40 with a more distant association with mouse polyomavirus, monkey polymavirus (LPV) and then avian polyomavirus (BFDV).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson JD, Gibson TJ, Plewniak F et al. The clustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acid Res 1997; 24:4876–4882.

    Article  Google Scholar 

  2. Se-A. Sequence Alignment Editor [computer program]. Version 2.0. Oxford: http://evolve.zoo.ox.ac.uk. 2002.

    Google Scholar 

  3. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. MBE 2000; 17(4):540–552.

    CAS  Google Scholar 

  4. Notredame C, Higgins D, Heringa J. T-Coffee: A novel method for multiple sequence alignments. J Mol Biol 2000; 302:205–217.

    Article  PubMed  CAS  Google Scholar 

  5. Hatwell JN, Sharp PM. Evolution of human polyomavirus JC. J Gen Virol 2000; 81:1191–1200.

    PubMed  CAS  Google Scholar 

  6. Jobes DV, Chima SC, Ryschkewitsch CF et al. Phylogenetic analysis of 22 complete genomes of the human polyomavirus JC virus. J Gen Virol 1998; 79:2491–2498.

    PubMed  CAS  Google Scholar 

  7. Posada D, Crandall KA. The effect of recombination on the accuracy of phylogeny estimation. JME 2002; 54:396–402.

    CAS  Google Scholar 

  8. Schierup MH, Hein J. Consequences of recombination on traditional phylogenetic analysis. Genetics 2000; 156:879–891.

    PubMed  CAS  Google Scholar 

  9. Rambaut A, Posada D, Crandall KA et al. The causes and consequences of HIV evolution. Nat Rev Genet 2004; 5(1):52–6l.

    Article  PubMed  CAS  Google Scholar 

  10. Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. PNAS 2001; 98(24):13757–13762.

    Article  PubMed  CAS  Google Scholar 

  11. Posada D. On the performance of methods for detecting recombination from DNA sequences: Real data. MBE 2002; 19(5):708–717.

    CAS  Google Scholar 

  12. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. MBE 1987; 4(4):406–425.

    CAS  Google Scholar 

  13. Huelsenbeck JP, Hillis DM. Success of phylogenetic methods in the four-taxon case. Syst Biol 1993; 42(3):247–264.

    Article  Google Scholar 

  14. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. JME 1981; 17:368–376.

    Article  CAS  Google Scholar 

  15. Lewis PO. A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide sequence data. MBE 1998; 15(3):277–283.

    CAS  Google Scholar 

  16. Lemmon AR, Milinkovitch MC. The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation. PNAS 2002; 99(16):10516–10521.

    Article  PubMed  CAS  Google Scholar 

  17. Brauer MJ, Holder MT, Dries LA et al. Genetic algorithms and parallel processing in maximum-likelihood phylogeny inference. MBE 2002; 19(10):1717–1726.

    CAS  Google Scholar 

  18. Huelsenbeck JP, Ronquist F, Nielsen R et al. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 2001; 294:2310–2314.

    Article  PubMed  CAS  Google Scholar 

  19. PAUP*. Phylogenetic analysis using parsimony (*and other methods) [computer program]. Version 4. Sunderland: Sinauer Associates, 2000.

    Google Scholar 

  20. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17(8):754–755.

    Article  PubMed  CAS  Google Scholar 

  21. Felsenstein J. Inferring phylogenies. Sunderland: Sinauer Associates, 2003.

    Google Scholar 

  22. Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HM, ed. Mammalian Protein Metabolism. New York: Academic Press, 1969:21–132.

    Google Scholar 

  23. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. JME 1980; 16:111–120.

    Article  CAS  Google Scholar 

  24. Rodríguez F, Oliver JL, Marin A et al. The general stochastic model of nucleotide substitution. J Theor Biol 1990; 142:485–501.

    Article  PubMed  Google Scholar 

  25. Yang Z. Among-site rate variation and its impact on phylogenetic analyses. Trends Eco Evol 1996; 11(9):367–372.

    Article  Google Scholar 

  26. Steel M, Huson D, Lockhart P. Invariable sites models and their use in phylogeny reconstruction. Syst Biol 2000; 49(2):225–232.

    Article  PubMed  CAS  Google Scholar 

  27. Muse SV, Gaut BS. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. MBE 1994; 11(5):715–724.

    CAS  Google Scholar 

  28. Yang Z, Goldman N, Friday A. Comparison of models for nucleotide substitution used in Maximum-likelihood phylogenetic estimation. MBE 1994; 11(2):316–324.

    CAS  Google Scholar 

  29. PHYLIP [computer program]. Version 3.6. Seattle: Department of Genome Sciences, University of Washington, 2002.

    Google Scholar 

  30. Posada D, Crandall KA. Selecting models of nucleotide substitution: An application to human immunodeficiency virus 1 (HIV-l). MBE 2001; 18(6):897–906.

    CAS  Google Scholar 

  31. Huelsenbeck JP, Crandall KA. Phylogeny estimation and hypothesis testing using maximum likelihood. Ann Rev Ecol Syst 1997; 28:437–466.

    Article  Google Scholar 

  32. Posada D, Crandall KA. A comparison of different strategies for selecting models of DNA substitution. Syst Biol 2001; 50(4):580–601.

    Article  PubMed  CAS  Google Scholar 

  33. Posada D, Crandall KA. Modeltest: Testing the model of DNA substitution. Bioinformatics 1998; 14(9):817–818.

    Article  PubMed  CAS  Google Scholar 

  34. Kelsey CR, Crandall KA, Voevodin AF. Different models, different trees: The geographic origin of PTLV-I. Mol Phylogenet Evol 1999; 13(2):336–347.

    Article  PubMed  CAS  Google Scholar 

  35. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791.

    Article  Google Scholar 

  36. Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 1993; 42:182–192.

    Article  Google Scholar 

  37. Erixon P, Svennnblad B, Britton T et al. Reliability of bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 2003; 52(5):665–673.

    Article  PubMed  Google Scholar 

  38. Cummings M, Handley S, Myers D et al. Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol 2003; 52(4):477–487.

    Article  PubMed  Google Scholar 

  39. Alfardo M, Zoller S, Lutzoni F. Bayes or bootstrap? A simulation study comparing the performance of bayesian markov chain monte carlo sampling and boostrapping in assessing phylogenetic confidence. MBE 2003; 20(2):255–266.

    Article  Google Scholar 

  40. Douady C, Delsue F, Boucher Y et al. Comparison of bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. MBE 2003; 20(2):248–254.

    Article  CAS  Google Scholar 

  41. Posada D, Crandall KA. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol Evol 2001; 16(1):37–45.

    Article  PubMed  Google Scholar 

  42. Crandall KA. Intraspecific cladogram estimation: Accuracy at higher levels of divergence. Syst Biol 1994; 43(2):222–235.

    Article  Google Scholar 

  43. Crandall KA. Intraspecific phylogenetics: Support for dental transmission of human immunodeficiency virus. J Virol 1995; 69(4):2351–2356.

    PubMed  CAS  Google Scholar 

  44. Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 1992; 132:619–633.

    PubMed  CAS  Google Scholar 

  45. Clement M, Posada D, Crandall KA. TCS: A computer program to estimate gene genealogies. Molecular Ecology 2000; 9:1657–1659.

    Article  PubMed  CAS  Google Scholar 

  46. Crandall KA. Multiple interspecies transmissions of human and simian T-cell leukemia/lymphoma virus type I sequences. MBE 1996; 13(1):115–131.

    CAS  Google Scholar 

  47. Crandall KA, Templeton AR. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 1993; 134:959–969.

    PubMed  CAS  Google Scholar 

  48. Castelloe J, Templeton AR. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 1994; 3(2):102–113.

    Article  PubMed  CAS  Google Scholar 

  49. Ferber D. Monkey virus link to cancer grows stronger. Science 2002; 296:1012–1015.

    Article  PubMed  CAS  Google Scholar 

  50. Crandall KA, Posada D. Phylogenetic approaches to molecular epidemiology. In: Leitner T, ed. The Molecular Epidemiology of Human Viruses: Kluwer Academic Publishers, 2002:25–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Crandall, K.A., Prérez-Losada, M., Christensen, R.G., McClellan, D.A., Viscidi, R.P. (2006). Phylogenomics and Molecular Evolution of Polyomaviruses. In: Ahsan, N. (eds) Polyomaviruses and Human Diseases. Advances in Experimental Medicine and Biology, vol 577. Springer, New York, NY. https://doi.org/10.1007/0-387-32957-9_3

Download citation

Publish with us

Policies and ethics