Skip to main content
Log in

‘Comment on: “The Case for Retiring Flexibility as a Major Component of Physical Fitness”

  • Letter to the Editor
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Current Opinion to this article was published on 16 December 2019

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Nuzzo JL. The case for retiring flexibility as a major component of physical fitness. Sports Med. 2019. https://doi.org/10.1007/s40279-019-01248-w.

    Article  PubMed  Google Scholar 

  2. Stathokostas L, Little R, Vandervoort A, Paterson D. Flexibility training and functional ability in older adults: a systematic review. J Aging Res. 2012;2012:306818.

    Article  Google Scholar 

  3. Hoier B, Rufener N, Bojsen-Moller J, Bangsbo J, Hellsten Y. The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J Physiol. 2010;588:3833–45.

    Article  CAS  Google Scholar 

  4. Hoier B, Walker M, Passos M, Walker P, Green A, et al. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease. J Appl Physiol. 1985;2013(115):1777–87.

    Google Scholar 

  5. Hotta K, Behnke B, Arjmandi B, Ghosh P, Chen B, et al. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle. J Physiol. 2018;596:1903–17.

    Article  CAS  Google Scholar 

  6. Sasa T, Sairyo K, Yoshida N, Fukunaga M, Koga K, et al. Continuous muscle stretch prevents disuse muscle atrophy and deterioration of its oxidative capacity in rat tail-suspension models. Am J Phys Med Rehabil. 2004;83:851–6.

    Article  Google Scholar 

  7. Pattullo M, Cotter M, Cameron N, Barry J. Effects of lengthened immobilization on functional and histochemical properties of rabbit tibialis anterior muscle. Exp Physiol. 1992;77:433–42.

    Article  CAS  Google Scholar 

  8. Clinch N. On the increase in rate of heat production caused by stretch in frog's skeletal muscle. J Physiol. 1968;196:397–414.

    Article  CAS  Google Scholar 

  9. Chambers M, Moylan J, Smith J, Goodyear L, Reid M. Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol. 2009;587:3363–73.

    Article  CAS  Google Scholar 

  10. Barnes W. Respiration and lactate production in isolated frog skeletal muscle: effects of passive stretch. Comp Biochem Physiol A Comp Physiol. 1987;86:229–32.

    Article  CAS  Google Scholar 

  11. Harris E. An effect of stretch upon the sodium output from frog muscle. J Physiol. 1954;124:242–7.

    Article  CAS  Google Scholar 

  12. Kruse N, Silette C, Scheuermann B. Influence of passive stretch on muscle blood flow, oxygenation and central cardiovascular responses in healthy young males. Am J Physiol Heart Circ Physiol. 2016;310:H1210–1221.

    Article  Google Scholar 

  13. Kruse N, Scheuermann B. Cardiovascular responses to skeletal muscle stretching: “stretching” the truth or a new exercise paradigm for cardiovascular medicine? Sport Med. 2017;47:2507–20.

    Article  Google Scholar 

  14. Yamato Y, Hasegawa N, Fujie S, Ogoh S, Iemitsu M. Acute effect of stretching one leg on regional arterial stiffness in young men. Eur J Appl Physiol. 2017;117:1227–322.

    Article  Google Scholar 

  15. Yamato Y, Hasegawa N, Sato K, Hamaoka T, Ogoh S, et al. Acute effect of static stretching exercise on arterial stiffness in healthy young adults. Am J Phys Med Rehabil. 2016;95:764–70.

    Article  Google Scholar 

  16. Cortez-Cooper M, Anton M, DeVan A, Neidre D, Cook J, et al. The effects of strength training on central arterial compliance in middle-aged and older adults. Eur J Prev Cardiol. 2008;15:149–55.

    Article  Google Scholar 

  17. Hotta K, Batchelor W, Graven J, Dahya V, Noel T, et al. Daily passive muscle stretching improves flow-mediated dilation of popliteal artery and 6-minute walk test in elderly patients with stable symptomatic peripheral artery disease. Cardiovasc Revasc Med. 2019;20:642–8.

    Article  Google Scholar 

  18. Hara K, Shinozaki H, Yamauchi M, Naruse R, Suetsugu M, et al. Improvement of vascular endothelial function at an early stage by the original stretching exercise designed in our study group in patients with type 2 diabetes mellitus. Diabetes. 2018;67:2240.

    Article  Google Scholar 

  19. McDaniel J, Ives S, Richardson R. Human muscle length-dependent changes in blood flow. J Appl Physiol. 2012;112:560–5.

    Article  Google Scholar 

  20. Feng T. The effect of length on the resting metabolism of muscle. J Physiol. 1932;74:441–54.

    Article  CAS  Google Scholar 

  21. Barnes W, Worrell G. Glycogen utilization in isolated frog muscle: an effect of passive mechanical stretch. Comp Biochem Physiol A Comp Physiol. 1985;81:243–6.

    Article  CAS  Google Scholar 

  22. Nelson A, Kokkonen J, Arnall D. Twenty minutes of passive stretching lowers glucose levels in an at-risk population: an experimental study. J Physiother. 2011;57:173–8.

    Article  Google Scholar 

  23. Garber C, Blissmer B, Deschenes M, Franklin B, Lamonte M, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–599.

    Article  Google Scholar 

  24. Beach T, Parkinson R, Stothart J, Callaghan J. Effects of prolonged sitting on the passive flexion stiffness of the in vivo lumbar spine. Spine J. 2005;5:145–54.

    Article  Google Scholar 

  25. Fatima G, Qamar M, Ul Hassan J, Basharat A. Extended sitting can cause hamstring tightness. Saudi J Sport Med. 2017;17:110–4.

    Article  Google Scholar 

  26. Hakkinen A, Kautiainen H, Hannonen P, Ylinen J. Strength training and stretching versus stretching only in the treatment of patients with chronic neck pain: a randomized one-year follow-up study. Clin Rehabil. 2008;22:592–600.

    Article  Google Scholar 

  27. Ylinen J, Kautiainen H, Wiren K, Hakkinen A. Stretching exercises vs manual therapy in treatment of chronic neck pain: a randomized, controlled cross-over trial. J Rehabil Med. 2007;39:126–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas T. Kruse.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this letter.

Conflicts of Interest

Nicholas Kruse declares that he has no conflicts of interest relevant to the content of this letter.

Additional information

This comment refers to the original available online at https://doi.org/10.1007/s40279-019-01248-w.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruse, N.T. ‘Comment on: “The Case for Retiring Flexibility as a Major Component of Physical Fitness”. Sports Med 50, 1405–1407 (2020). https://doi.org/10.1007/s40279-020-01291-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01291-y

Navigation