Skip to main content
Erschienen in: Zeitschrift für Gerontologie und Geriatrie 7/2013

01.10.2013 | Beiträge zum Themenschwerpunkt

Regulating aging in adult stem cells with microRNA

verfasst von: M. Hodzic, Y. Naaldijk, A. Stolzing

Erschienen in: Zeitschrift für Gerontologie und Geriatrie | Ausgabe 7/2013

Einloggen, um Zugang zu erhalten

Abstract

Aging can be defined as the result of accumulated cellular damage and deregulation of the epigenome. These changes cause impaired cell maintenance systems, reduced tissue regeneration, weakening of the immune system and increased risk of malignancy. The higher mortality rate in older individuals is a result of these pathologies. The study of age-related changes in adult stem cells and their regenerative potential is crucial to our understanding of the physical deterioration of organs and tissues. The growing interest and knowledge in the field of microRNAs adds a further dimension to this field of research. MicroRNAs are important posttranscriptional regulators of gene expression. They co-regulate stem cell properties such as potency, differentiation, self-renewal and senescence. Various cell systems, e.g. defense mechanisms against reactive oxygen radicals (ROS), DNA repair and apoptosis are regulated by microRNAs. These properties and the assumption that microRNAs act as some kind of general switch make them highly relevant in aging research.
Literatur
1.
Zurück zum Zitat Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97(1):1–6PubMedCrossRef Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97(1):1–6PubMedCrossRef
2.
Zurück zum Zitat Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101PubMedCrossRef Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101PubMedCrossRef
3.
Zurück zum Zitat Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680PubMedCrossRef Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680PubMedCrossRef
4.
Zurück zum Zitat Wu E, Thivierge C, Flamand M et al (2010) Pervasive and cooperative deadenylation of 3’UTRs by embryonic microRNA families. Mol Cell 40(4):558–570PubMedCrossRef Wu E, Thivierge C, Flamand M et al (2010) Pervasive and cooperative deadenylation of 3’UTRs by embryonic microRNA families. Mol Cell 40(4):558–570PubMedCrossRef
5.
Zurück zum Zitat Silva Meirelles L da, Chagastelles PC et al (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213CrossRef Silva Meirelles L da, Chagastelles PC et al (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213CrossRef
6.
Zurück zum Zitat Zhang X, Hirai M et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112:1206–1218PubMedCrossRef Zhang X, Hirai M et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112:1206–1218PubMedCrossRef
7.
Zurück zum Zitat Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563PubMedCrossRef Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563PubMedCrossRef
8.
Zurück zum Zitat Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16(4):445–453PubMedCrossRef Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16(4):445–453PubMedCrossRef
9.
Zurück zum Zitat Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213PubMedCrossRef Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213PubMedCrossRef
10.
Zurück zum Zitat Bork S, Horn P, Castoldi M et al (2010) Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol Bork S, Horn P, Castoldi M et al (2010) Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol
11.
Zurück zum Zitat Lee S, Jung JW, Park SB et al (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68(2):325–336PubMedCrossRef Lee S, Jung JW, Park SB et al (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68(2):325–336PubMedCrossRef
12.
Zurück zum Zitat Chhabra R, Adlakha YK, Hariharan M et al (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 4(6):e5848PubMedCrossRef Chhabra R, Adlakha YK, Hariharan M et al (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 4(6):e5848PubMedCrossRef
13.
Zurück zum Zitat Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1{alpha}, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890SPubMedCrossRef Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1{alpha}, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890SPubMedCrossRef
14.
Zurück zum Zitat Corton JC, Brown-Borg HM (2005) Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Gerontol A Biol Sci Med Sci 60(12):1494–1509PubMedCrossRef Corton JC, Brown-Borg HM (2005) Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Gerontol A Biol Sci Med Sci 60(12):1494–1509PubMedCrossRef
15.
Zurück zum Zitat Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317PubMedCrossRef Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317PubMedCrossRef
16.
Zurück zum Zitat Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5(7):e11707PubMedCrossRef Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5(7):e11707PubMedCrossRef
17.
Zurück zum Zitat Bellizzi D, Rose G, Cavalcante P et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263PubMedCrossRef Bellizzi D, Rose G, Cavalcante P et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263PubMedCrossRef
18.
Zurück zum Zitat Hackl M, Brunner S (2010) mir-17, mir-19b, mir-20a, and mir-106 are down-regulated in human aging. Aging Cell 9(2):291–296PubMedCrossRef Hackl M, Brunner S (2010) mir-17, mir-19b, mir-20a, and mir-106 are down-regulated in human aging. Aging Cell 9(2):291–296PubMedCrossRef
19.
Zurück zum Zitat Grillari J, Hackl M, Grillari-Voglauer R (2010) miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 11(4):501–506PubMedCrossRef Grillari J, Hackl M, Grillari-Voglauer R (2010) miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 11(4):501–506PubMedCrossRef
20.
Zurück zum Zitat Olive V, Bennett MJ (2009) mir-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849PubMedCrossRef Olive V, Bennett MJ (2009) mir-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849PubMedCrossRef
21.
Zurück zum Zitat Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16(8):797–803PubMedCrossRef Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16(8):797–803PubMedCrossRef
22.
Zurück zum Zitat Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135(2):227–239PubMedCrossRef Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135(2):227–239PubMedCrossRef
23.
Zurück zum Zitat Passegue E, Wagner EF, Weissman IL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119(3):431–443PubMedCrossRef Passegue E, Wagner EF, Weissman IL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119(3):431–443PubMedCrossRef
24.
Zurück zum Zitat Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRef Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRef
25.
Zurück zum Zitat Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259PubMedCrossRef Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259PubMedCrossRef
26.
Zurück zum Zitat Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5(7):e11803PubMedCrossRef Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5(7):e11803PubMedCrossRef
27.
Zurück zum Zitat Chen TS, Lai RC, Lee MM et al (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224PubMedCrossRef Chen TS, Lai RC, Lee MM et al (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224PubMedCrossRef
28.
Zurück zum Zitat Burdzinska A, Gala K, Paczek L (2008) Myogenic stem cells. Folia Histochem Cytobiol 46(4):401–412PubMed Burdzinska A, Gala K, Paczek L (2008) Myogenic stem cells. Folia Histochem Cytobiol 46(4):401–412PubMed
29.
Zurück zum Zitat Drummond MJ, McCarthy JJ, Sinha M et al (2010) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics Drummond MJ, McCarthy JJ, Sinha M et al (2010) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics
30.
Zurück zum Zitat Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100(1):15–26PubMedCrossRef Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100(1):15–26PubMedCrossRef
32.
Zurück zum Zitat Kirton JP, Xu Q (2010) Endothelial precursors in vascular repair. Microvasc Res 79(3):193–199PubMedCrossRef Kirton JP, Xu Q (2010) Endothelial precursors in vascular repair. Microvasc Res 79(3):193–199PubMedCrossRef
33.
Zurück zum Zitat Heiss C, Keymel S (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45(9):1441–1448PubMedCrossRef Heiss C, Keymel S (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45(9):1441–1448PubMedCrossRef
34.
Zurück zum Zitat Potente M, Ghaeni L (2007) SIRT1 controls endothelial angiogenesis functions during vascular growth. Genes Dev 21(20):2644–2658PubMedCrossRef Potente M, Ghaeni L (2007) SIRT1 controls endothelial angiogenesis functions during vascular growth. Genes Dev 21(20):2644–2658PubMedCrossRef
35.
Zurück zum Zitat Zhao T, Li N (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent formation regulator 1. Am J Physiol Endocrinol Metab 229(1):E110–E116CrossRef Zhao T, Li N (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent formation regulator 1. Am J Physiol Endocrinol Metab 229(1):E110–E116CrossRef
36.
Zurück zum Zitat Bommer GT, Gerin I (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedCrossRef Bommer GT, Gerin I (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedCrossRef
37.
Zurück zum Zitat Tivnan A, Tracey L, Buckley PG et al (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33PubMedCrossRef Tivnan A, Tracey L, Buckley PG et al (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33PubMedCrossRef
38.
Zurück zum Zitat Vaziri H, Dessain SK (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159PubMedCrossRef Vaziri H, Dessain SK (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159PubMedCrossRef
39.
Zurück zum Zitat Smith J (2002) Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol 12(9):404–406PubMedCrossRef Smith J (2002) Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol 12(9):404–406PubMedCrossRef
40.
Zurück zum Zitat Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199PubMedCrossRef Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199PubMedCrossRef
41.
Zurück zum Zitat Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532PubMedCrossRef Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532PubMedCrossRef
42.
Zurück zum Zitat Yu JM, Wu X et al (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79PubMedCrossRef Yu JM, Wu X et al (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79PubMedCrossRef
Metadaten
Titel
Regulating aging in adult stem cells with microRNA
verfasst von
M. Hodzic
Y. Naaldijk
A. Stolzing
Publikationsdatum
01.10.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Zeitschrift für Gerontologie und Geriatrie / Ausgabe 7/2013
Print ISSN: 0948-6704
Elektronische ISSN: 1435-1269
DOI
https://doi.org/10.1007/s00391-013-0531-7

Weitere Artikel der Ausgabe 7/2013

Zeitschrift für Gerontologie und Geriatrie 7/2013 Zur Ausgabe

CME Zertifizierte Fortbildung

Impfungen im Alter

Beiträge zum Themenschwerpunkt

Redox balance in the aged endothelium

Mitteilungen der DGGG

Mitteilungen der DGGG