Pneumologie 2008; 62(3): 143-147
DOI: 10.1055/s-2008-1038096
Serie: Tuberkulose
© Georg Thieme Verlag Stuttgart · New York

Immunologie der Tuberkulose und Entwicklungsstand neuer Impfstoffe

Immunology of Tuberculosis and Current Status of Vaccine DevelopmentT.  Ulrichs1
  • 1Koch-Metschnikow-Forum, Berlin
Further Information

Publication History

Publication Date:
05 March 2008 (online)

Zusammenfassung

Auch 125 Jahre nach der Entdeckung des Tuberkuloseerregers Mycobacterium tuberculosis durch Robert Koch stellt die Tuberkulose weltweit ein Gesundheitsproblem dar, das die WHO als global emergency, als globalen Notfall, einstuft. Eine hohe Durchseuchungsrate mit M. tuberculosis, das im Wirtsorganismus so lange persistiert, bis ihm ein geschwächtes Abwehrsystem die Gelegenheit zur Ausbreitung bietet, und eine aufwendige und kostenintensive Chemotherapie machen die Entwicklung eines geeigneten Impfstoffs dringend erforderlich. Hinzu kommen steigende Raten an multiresistenter Tuberkulose, v. a. in den Nachfolgestaaten der Sowjetunion und in China. Da seit Jahrzehnten kein neues Tuberkulosemedikament mehr zugelassen wurde, um dieser Entwicklung wirksam zu begegnen, besteht auch hier ein enormer Nachholbedarf. Im Folgenden wird die Immunabwehr bei der Tuberkulose vorgestellt, aus der sich verschiedene Strategien und Ansatzpunkte zur Impfstoffentwicklung ergeben und die zu einem besseren Verständnis der Infektionserkrankung Tuberkulose und ihrer Besonderheiten dienen soll. Die Entwicklung neuer Impfstoffkandidaten ist auf einem guten Weg. Dank internationaler Förderung stehen einige Kandidaten bereits kurz vor der klinischen Testung.

Abstract

Even 125 year after the discovery of Mycobacterium tuberculosis as the aetiological agent of tuberculosis by Robert Koch, tuberculosis is still a global health emergency according to WHO. The high infection rate with M. tuberculosis that persists in the human host until a weakened host immune system allows a reactivation and complicated and expensive antituberculous chemotherapy urgently demand the development of new vaccines. Increasing numbers of multidrug-resistant tuberculosis, especially in the successor states of the former Soviet Union and China, further complicate an efficient tuberculosis control. For decades, there was no new release of an antituberculous drug to efficiently fight tuberculosis. Hence, also drug development has to keep up with the development of resistance by the pathogen. The following review describes the immune response to M. tuberculosis infection and the deduction of strategies for novel vaccines. Thanks to international financial support, several new vaccine candidates are already in the pipeline and close to clinical testing phases.

Literatur

  • 1 WHO .Tuberculosis Report 2007. Global tuberculosis control - surveillance, planning, financing - WHO report on tuberculosis 2007. http://www.who.int/tb/publications/global_report/en/; published March 19, 2007 (zuletzt abgerufen: Oktober 2007)
  • 2 WHO .Berlin Declaration 2007. http://www.euro.who.int/tuberculosis/TBForum/20 070 926_1 (zuletzt abgerufen: Oktober 2007)
  • 3 Armstrong J A, Hart P D. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survical.  J Exp Med. 1975;  142 1-16
  • 4 Le C V, Cols C, Maridonneau-Parini I. Nonopsonic phagocytosis of zymonsan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation.  Infect Immun. 2000;  68 4736-4745
  • 5 Kaufmann S H. How can immunology contribute to the control of tuberculosis?.  Nat Rev Immunol. 2001;  1 20-30
  • 6 Flynn J L. Immunology of tuberculosis and implications in vaccine development.  Tuberculosis. 2004;  84 93-101
  • 7 Ulrichs T, Kaufmann S H. [Immunology of tuberculosis: impact on the development of novel vaccines].  Internist. 2003;  44 1374-1384
  • 8 Boros D L. Granulomatous inflammations.  Prog Allergy. 1978;  24 183-267
  • 9 Ulrichs T, Kosmiadi G A, Trusov V. et al . Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung.  J Pathol. 2004;  204 217-228
  • 10 Ulrichs T, Kosmiadi G A, Jorg S. et al . Differential Organization of the Local Immune Response in Patients with Active Cavitary Tuberculosis or with Nonprogressive Tuberculoma.  J Infect Dis. 2005;  192 89-97
  • 11 Cole S T, Brosch R, Parkhill J. et al . Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.  Nature. 1998;  393 537-544
  • 12 Glickman M S, Cox J S, Jacobs W R. A novel mycolic acid cyclopropane synthetase is required for coding, persistence, and virulence of Mycobacterium tuberculosis.  Mol Cell. 2000;  5 717-727
  • 13 Ando M, Yoshimatsu T, Ko C. et al . Deletion of Mycobacterium tuberculosis sigma factor E results in delayed time to death with bacterial persistence in the lungs of aerosol-infected mice.  Infect Immun. 2003;  71 7170-7172
  • 14 Ramakrishnan L, Federspiel N A, Falkow S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family.  Science. 2000;  288 1436-1439
  • 15 Kaplan G, Post F A, Moreira A L. et al . Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity.  Infect Immun. 2003;  71 7099-7108
  • 16 Pai M, Riley L W, Colford Jr J M. Interferon-gamma assays in the immunodiagnosis of tuberculosis: a systematic review.  Lancet Infect Dis. 2004;  4 761-776
  • 17 Ulrichs T, Kaufmann S H. Mycobacterial persistence and immunity.  Front Biosci. 2002;  7 D458-D469
  • 18 Stead W W. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection?.  Am Rev Respir Dis. 1967;  95 729-745
  • 19 Rie A van, Warren R, Richardson M. et al . Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment.  N Engl J Med. 1999;  341 1174-1179
  • 20 Fine P E. The BCG story: lessons from the past and implications for the future.  Rev Infect Dis. 1989;  11 Suppl 2 S353-S359
  • 21 Colditz G A, Brewer T F, Berkey C S. et al . Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature.  JAMA. 1994;  271 698-702
  • 22 Kaufmann S H, McMichael A J. Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis.  Nat Med. 2005;  11 (4 Suppl) S33-S44
  • 23 Kaufmann S H. The contribution of immunology to the rational design of novel antibacterial vaccines.  Nat Rev Microbiol. 2007;  5 491-504
  • 24 Grode L, Seiler P, Baumann S. et al . Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin.  J Clin Invest. 2005;  115 2472-2479

Dr. med. Timo Ulrichs

Leiter der Sektion Tuberkulose, Koch-Metschnikow-Forum, Langenbeck-Virchow-Haus

Luisenstr. 59

10117 Berlin

Email: timo.ulrichs@bmg.bund.de

    >