Deutsche Zeitschrift für Onkologie 2003; 35(1): 15-23
DOI: 10.1055/s-2003-39623
Wissenschaft & Forschung

Karl F. Haug Verlag, in: MVS Medizinverlage Stuttgart GmbH & Co. KG

Effects of Magnetic Fields on Health and Disease

George D. O'Clock1
  • 1Department of Electrical and Computer Engineering & Technology, Minnesota State University, Mankato
Further Information

Publication History

Publication Date:
03 June 2003 (online)

The use of magnetic materials and devices for therapeutic and/or rejuvenation purposes dates back to the ancient Greeks, Chinese and Egyptians. In the early 1500's, Paracelsus used magnets in an attempt to treat epilepsy, gastrointestinal disease and hemorrhage problems. In the early 1600's William Gilbert treated strangulated hernias with magnets [[1]]. Magnetotherapy has been used to treat many health problems and diseases including bone fractures, pain, facial paralysis, arthritis, osteoporosis, varicose ulcers, phlebitis and cancer [[2], [3], [4], [5], [6]].

With respect to therapeutic modalities utilized in cancer treatment, magnetic fields exhibit characteristics similar to those associated with chemotherapeutic agents and radiation. Under certain conditions; magnetotherapy, chemotherapy and radiation therapy can be used to treat cancer. If the conditions change, some studies suggest that all three of the above therapeutic modalities can be contributing factors to cancer.

For many years, the field of magnetotherapy has been plagued with the inappropriate use of various mathematical models and physical principles. A few critics would state that the models and principles used in this paper are incorrectly applied. In truth, the equations and relationships from mathematics and physics, discussed in this paper, are valid up to a point. The mathematical models and physical principles that follow can help the reader to characterize and visualize some of the interactions and processes that occur in magnetotherapy. However, the mathematical models and physical principles that appear in this paper may not always provide the level of rigor, clarity, accuracy and precision that we would like to see, as we consider a wide range of magnetic field orientations, intensities, frequencies, etc. interacting with biological systems.

At times, the material in this paper may appear to stray from oncology concerns. For instance, the application of therapeutic magnetic fields for a wide variety of health problems and diseases, including fracture healing and neurological disorders, will be included. The relationship that of this material has to oncology will be discussed at the end of the paper.

References

  • 01 Rosch P., Ed.. Electromagnetic therapy and 21st century medicine. Health and Healing.  The Newsletter of the American Institute of Stress. 10 1996;  1-8
  • 02 Sodi Pallares D.. Pulsed magnetic fields. Proc Fourth Intl Symp on Biologically Closed Electric Circuits Bloomington, MN; 1997: 216-28
  • 03 Buechler D. N., Christensen D. A., Durney C. H., Simon B.. Calculation of electric fields induced in the human knee by a coil applicator. Bioelectromagnetics.  22 2001;  224-231
  • 04 Markov M. S.. Clinical application of magnetic and electromagnetic fields. IX Int Congress on Stress Montreaux, Switzerland; 1997: 130
  • 05 Bassett C. A., Mitchell S. N., Gastron S. R.. Pulsing electromagnetic field treatment in ununited fractures and arthrodeses.  J Am Med Assn. 247 1982;  623-628
  • 06 Becker R. O.. Cross currents. New York; G.P. Putnam 1990
  • 07 Blackman C. F., Kinney L. S., House D. E., Jones W. T.. Multiple power density windows and their possible origin.  Bioelectromagnetics. 10 1989;  115-128
  • 08 Schwartz J. L., House D. E., Mealing G. A. R.. Exposure of frog hearts to CW or amplitude-modulated VHF fields: selective efflux of calcium ions at 16 Hz.  Bioelectromagnetics. 11 1990;  349-358
  • 09 Ross S. M.. Combined DC and ELF magnetic fields can alter cell proliferation.  Bioelectromagnetics. 11 1990;  27-36
  • 10 Blackman C. F., Most B.. A scheme for incorporating DC magnetic fields into epidemiological studies of EMF exposure.  Bioelectromagnetics. 14 1993;  413-431
  • 11 Wei L. X., Goodman R., Henderson A.. Changes in levels of c-myc and histone H2B following exposure of cells to low-frequency sinusoidal electromagnetic fields: evidence for a window effect.  Bioelectromagnetics. 11 1990;  269-272
  • 12 Anninos P. A., Tsagas N., Sandyk R., Derpapas K.. Magnetic stimulation in the treatment of partial seizures.  Int J Neurosci. 60 1991;  149-168
  • 13 Dobson J., St. Pierre T., Wieser H. G., Fuller M.. Changes in paroxysmal brainwave patterns of epileptics by a weak-field magnetic stimulation.  Bioelectromagnetics. 21 2000;  94-99
  • 14 Spadaro J.. Mechanical and electrical interactions in bone remodeling.  Bioelectromagnetics. 18 1997;  193-202
  • 15 Kirsch D.. The science behind cranial electrotherapy stimulation. Edmonton, Canada; Medical Scope Pub. 1999
  • 16 Assimacopoulos D.. Low intensity negative electric current in the treatment of the leg due to chronic venous insufficiency.  Am J Surg. 115 1968;  683-687
  • 17 Nordenström B. E. W.. Biologically closed electric circuits; clinical, experimental and theoretical evidence for an additional circulatory system. Stockholm; Nordic Medical Pub. 1983
  • 18 O'Clock G. D.. Evidence and necessity for biologically closed electric circuits in healing and oncology.  German J Onc. 33 2001;  77-84
  • 19 O'Clock G. D., Leonard T.. In vitro response of retinoblastoma, lymphoma and nonmalignant cells to direct current: therapeutic implications.  German J Onc. 33 2001;  85-90
  • 20 Lerner F. N., Kirsch D. L.. A double-blind comparative study of micro-stimulation and placebo effect in short-term treatment of the chronic back pain patient.  ACA J Chiropractic. 15 1981;  101-106
  • 21 Sakatani S., Hirose A.. A quantitative evaluation of the magnetic field generated by a CA3 pyramidal cell at EPSP and action potential stages.  IEEE Trans Biomed Eng. 49 2002;  310-319
  • 22 Schimmelpfeng J., Dertinger H.. Action of a 50 Hz magnetic field on proliferation of cells in culture.  Bioelectromagnetics. 18 1997;  177-183
  • 23 Tofani S., Brone D., Cintorino M., de Santi M. M., Ferrara A., Orissino R., Ossola P., Peroglio F., Rolfo K., Ronchetto F.. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis.  Bioelectromagnetics. 22 2001;  419-428
  • 24 Zhou J., Li C., Yao G., Chiang H., Chang Z.. Gene expression of cytokine receptors in HL60 cells exposed to a 50 Hz magnetic field.  Bioelectromagnetics. 23 2002;  339-346
  • 25 Laroye I., Poncy J. L.. Influence of 50-Hz magnetic fields and ionizing radiation on c-jun and c-fos oncoproteins.  Bioelectromagnetics. 19 1998;  112-116
  • 26 Hirakawa E., Ohmori M., Winters W.. Environmental magnetic fields change complementary DNA synthesis in cell-free systems.  Bioelectromagnetics. 17 1996;  322-326
  • 27 Hayt W. H.. Engineering electromagnetics. New York; McGraw-Hill 1974
  • 28 Paul C. R., Nasar S. A.. Introduction to electromagnetic fields. 2nd Ed. New York; McGraw-Hill 1974
  • 29 Polk C.. Electric fields and surface charges induced by ELF magnetic fields.  Bioelectromagnetics. 11 1990;  189-201
  • 30 Wake K., Tanaka T., Taki M.. Analysis of induced currents in a rat exposed to 50 Hz linearly and circularly polarized magnetic fields.  Bioelectromagnetics. 21 2000;  354-363
  • 31 Thomasset A. L.. Propriétés électriques des tissues biologiques, mesure de l'impédance en clinique.  Lyon Médical. 21 1962;  107
  • 32 Smith D. G., Potter S. R., Lee B. R., Ko H. W., Drummond W. R., Telford J. K., Partin A. W.. In vivo measurement of tumor conductivities with the magnetic bioimpedance method.  IEEE Trans Biomed Eng. 47 2000;  1403-1405
  • 33 Surowiec A. J., Stuchly S. W., Barr J. R., Swarup A.. Dielectric properties of breast carcinoma and the surrounding tissues.  IEEE Trans Biomed Eng. 35 1988;  257-263
  • 34 Liboff A. R.. Geomagnetic cyclotron resonance in membrane transport.  J Biol Phys. 13 1985;  99-102
  • 35 Blanchard J. P., Blackman C. F.. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems.  Bioelectromagnetics. 15 1994;  217-238
  • 36 Liboff A. R., Cherng S., Jenrow K. A., Bull A.. Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields.  Bioelectromagnetics. 24 2003;  32-38
  • 37 Blackman C. F., Blanchard J. P., Benane S. G., House D. E.. Empiricial test of an ion paramagnetic resonance model for magnetic field interactions with PC-12 cells.  Bioelectromagnetics. 15 1994;  239-260
  • 38 Adair R. K.. Measurements described in a paper by Blackman, Blanchard, Benane and House are statistically invalid.  Bioelectromagnetics. 17 1996;  510-511
  • 39 Höjevik P., Sandblom J., Galt S., Hamnerius Y.. Ca2+ ion transport through patchclamped cells exposed to magnetic fields.  Bioelectromagnetics. 16 1995;  33-40
  • 40 Anninos P. A., Adamopoulus A. V., Katini A., Katini N.. Nonlinear analysis of brain activity in magnetic influenced Parkinson patients.  Brain Topography. 13 2000;  135-144
  • 41 Adair R. K.. A physical analysis of the ion parametric resonance model.  Bioelectromagnetics. 19 1998;  181-191
  • 42 Sandweiss J.. On the cyclotron resonance model of ion transport.  Bioelectromagnetics. 11 1990;  203-205
  • 43 Beattie E. C., Stellwagen D., Morishita W., Bresnahan J. C., Ha B. K., Zastrow M. von, Beattie M. S., Malenka R. C.. Control of synaptic strength by glial TNFα.  Science. 295 2002;  2282-2285
  • 44 Nordenström B. E. W.. Exploring BCEC - Systems. Stockholm; Nordic Medical Pub. 1998
  • 45 O'Clock G. D.. Magnetic field induced resonance and particle/wave phenomena in living systems. X Int Congress on Stress Montreaux, Switzerland; 1997: 140
  • 46 Zhadin M. N.. Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects.  Bioelectromagnetics. 19 1998;  279-292
  • 47 Lisi A., Pozzi D., Pasquali E., Reiti S., Girasole M., Cricenti A., Generosi R., Serafino A. L., Congiu-Castellano A., Ravagnan G., Giuliani L., Grimaldi S.. Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji).  Bioelectromagnetics. 21 2000;  46-51
  • 48 Tofani S., Cintorino M., Barone D., Berardelli M., De Santi M. M., Ferrara A., Orlassino R., Ossola P., Rolfo K., Ronchetto F., Tripodi S. A., Tosi P.. Increased mouse survival, tumor growth inhibition and decreased immunoreactive p53 after exposure to magnetic fields.  Bioelectromagnetics. 23 2002;  230-238
  • 49 De Seze R., Bouthet C., Tuffet S., Deschaux P., Caristan A., Moreau J. M., Veyret B.. Effects of time-varying uniform magnetic fields on natural killer cell activity and antibody response in mice.  Bioelectromagnetics. 14 1993;  405-412
  • 50 Schimmelpfeng J., Stein J. C., Dertinger H.. Action of 50 Hz magnetic fields on cyclic AMP and intercellular communication in monolayers and spheroids of mammalian cells.  Bioelectromagnetics. 16 1995;  381-386

Correspondence to:

George D. O'Clock

President, International Association for Biologically Closed Electric Circuits in Medicine and Biology
Department of Electrical and Computer Engineering & Technology
Minnesota State University, Mankato

Mankato, MN 56001 USA

Email: george.oclock@mankato.msus.edu

    >