Int J Sports Med 2000; 21(7): 459-462
DOI: 10.1055/s-2000-7411
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart · New York

Ascent Rate and Circulating Venous Bubbles in Recreational Diving

D. Carturan1 , A. Boussuges2 , F. Molenat2 , H. Burnet3 , J. Fondarai4 , B. Gardette5
  • 1 UFR STAPS, Faculté de Luminy, Marseille, France
  • 2 Service de Réanimation Médicale et d'Hyperbarie, Hôpital Salvator, Marseille, France
  • 3 CNRS, UPR de neurobiologie et du mouvement, Marseille, France
  • 4 Service de Médecine du Sport, Hôpital Salvator, Marseille, France
  • 5 COMEX SA, Boulevard des Océans, Marseille, France
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The aim of this study was to assess the effect of the ascent rate on the production of venous circulating bubbles during the decompression following a recreational dive. Twenty-eight recreational divers performed two open water dives at 35 m during 25 minutes. Ascent rate up to the decompression stop was in one case 9 meter per minute (m/min) and in the other case 17 m/min. Circulating venous bubbles were screened using continuous wave Doppler every 10 minutes during one hour after surfacing. Bubbles Doppler signals were graded according to the Spencer scale (from 0 to IV), and the Kisman integrated severity score (KISS) was calculated. Statistical analysis demonstrated a significantly higher bubbles grade and a significantly higher KISS following the rapid decompression compared to the slow one (respectively p = 0.001 and p = 0.0001). In conclusion, these results demonstrate that a 9 m/min ascent rate is safer than a 17 m/min one.

References

  • 1 Eatock B C. Correspondence between intravascular bubbles and symptoms of decompression sickness.  Undersea Biomed Res. 1984;  11 326-329
  • 2 Eckenhoff R G, Olstad C S, Carrod G. Human dose response relationship for decompression and endogenous bubble formation.  J Appl Physiol. 1990;  69 914-918
  • 3 Fienberg S E. The Analysis of Cross-Classified Categorical Data, Second edition. Cambridge, Massachusetts, London; MIT Press 1981
  • 4 Gardette B. Correlation between decompression sickness and circulating bubbles in 232 divers.  Undersea Biomed Res. 1979;  6 99-107
  • 5 Jankowski L W, Nishi R Y, Eaton D J, Griffin A P. Exercise during decompression reduces the amount of venous gas emboli.  Undersea Hyperbaric Med. 1997;  24 59-65
  • 6 Kisman K, Masurel G, Lagrue D, Le Perchon J C. Evaluation de la qualité d'une décompression basée sur la détection ultrasonore de bulles.  Med Aéro Spat Med Sub Hyp. 1978;  67 293-297
  • 7 Lanphier E H. A Historical look at ascent. In: Lang MA, Ergstrom GH (eds) Biomechanics of Safe Ascent Workshops. AAUS Diving Safety Publication, AAUSDSP - BSA-01-90. Costa Mesa California; American Association of Underwater Sciences 1990: 5-8
  • 8 Lightfoot E N, Baz A, Lanphier E H, Kindwall E P, Seireg A. Role of bubble growth kinetics in decompression. In: Shilling CW, Beckett MW (eds) Proceedings of the Sixth Symphosium on Underwater and Hyperbaric Physiology. Bethesda MD; Undersea Medical Society 1978: 449-457
  • 9 Marroni A, Zannini D. Effetti della variazone delle velocita di risalita sulla produzione di bolle gassose circolanti dopo immersioni ad aria compressa.  Min Med. 1981;  72 3567-3572
  • 10 Masurel G, Guillerm R, Cavenel P. Détection ultrasonore par effet Doppler de bulles circulantes chez l'homme lors de 98 plongées à l'air.  Med Aéro Spat Med Sub Hyp. 1976;  15 199-202
  • 11 Mekjavic I B, Katitsuba N. Effects of peripheral temperature on the formation of venous gas bubbles.  Undersea Biomed Res. 1989;  16 391-401
  • 12 Nishi R Y, Kisman K E, Eatock B C, Buckingham I P, Masurel G. Assessment of decompression profiles and divers by Doppler ultrasonographic monitoring. In: Bachrach AJ, Matzen MM (eds) Proceedings of the VII Th Symposium on Underwater Physiology. Bethesda MD; Undersea Medical Society 1981: 717-727
  • 13 Pollard G W, Marsh P L, Fife C E, Smith L R, Vann R D. Ascent rate, post dive exercise, and decompression sickness in the rat.  Undersea Hyperbaric Med. 1995;  22 367-376
  • 14 Reinertsen R E, Flook V, Koteng S, Brubbak A O. Effect of oxygen tension and rate of pressure reduction during decompression on central gas bubbles.  J Appl Physiol. 1998;  84 351-356
  • 15 Spencer M P. Decompression limits for compressed air determined by ultrasonically detected blood bubbles.  J Appl Physiol. 1976;  40 229-235
  • 16 Vann R D, Thalmann E D. Decompression Physiology and Practice. In: Bennett PB, Elliott DH (eds) The Physiology and Medicine of Diving. 4th Ed. London; W. B. Saunders Company LTD 1993: 376-432
  • 17 Yount D E, Gillary E W, Hoffman D C. Microscopic study of bubble formation nuclei. In: Bachrach AJ, Matzen MM (eds) Proceedings of the VIII Th Symposium on Underwater Physiology. Bethesda MD; Undersea and Hyperbaric Medical Society 1984: 119-130

Dr. Alain Boussuges

Service de Réanimation Médicale et d'Hyperbarie Hôpital Salvator

249 Bd de Sainte Marguerite BP 51-13274 Marseille Cédex 09 France

Phone: Phone:+ 33 (4) 91744948

Fax: Fax:+ 33 (4) 91745435

Email: E-mail:jsainty@ap-hm.fr

    >