Vet Comp Orthop Traumatol 2006; 19(02): 65-71
DOI: 10.1055/s-0038-1632977
Review Article
Schattauer GmbH

The use of radiofrequency energy during arthroscopic surgery and its effects on intraarticular tissues

C. L. Horstman
1   Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, USA
,
R. M. McLaughlin
1   Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, USA
› Author Affiliations
Further Information

Publication History

Received 08 December 2005

Accepted 25 December 2005

Publication Date:
08 February 2018 (online)

Summary

The use of radiofrequency (RF) energy has become very popular in human and veterinary arthroscopic surgery since the late 1990's. Both monopolar and bipolar RF units are available. Application of RF energy to joint capsular tissue leads to immediate tissue shrinkage that is both power and temperature dependent. Changes in joint capsular tissue have been noted at temperatures greater than 65°C. Treatment of articular cartilage with RF energy leads to immediate chondrocyte damage. This damage is also power and temperature dependent and is observed at temperatures as low as 45°C. Caution should be used when applying RF energy within a joint to prevent or minimize articular cartilage injury.

 
  • References

  • 1 Fox JM, Ferkel RD, Pizzo WD. et al. Electrosurgery in orthopaedics: Part I-Principles. Contemp Orthop 1984; 8: 21-32.
  • 2 D'Arsonval A. Action physiologique des courants alternatifs a grand frequence. Arch Physiol Norm Pathol 1893; 5: 401-8 789-90.
  • 3 Pollack SV. Electrosurgery of the skin. New York: Churchill Livingstone; 1991
  • 4 Medvecky MJ, Ong BC, Rokito AS. et al. Thermal capsular shrinkage: Basic science and clinical applications. Arthroscopy 2001; 17: 624-35.
  • 5 Van Haesendonck C, Sinnaeve A, Willems R. et al. Biophysical and electrical aspects of radio frequency catheter ablation. Acta Cardiol 1995; 50: 105-15.
  • 6 Fanton GS. Arthroscopic electrothermal surgery of the shoulder. Oper Tech Sports Med 1998; 6: 139-46.
  • 7 Organ LW. Electrophysiologic principles of radio-frequency lesion making. Appl Neurophysiol 1976; 39: 69-76.
  • 8 Eggers PE, Thapliyal HV. Matthews LS. Coblation: A newly defined method for soft-tissue surgery. Research Outcomes in Arthroscopic Surgery 1997; 2: 1.
  • 9 Thabit G. Treatment of unidirectional and multidirectional glenohumeral instability by an arthroscopic holmium:YAG laser-assisted capsular shift procedure: A pilot study Laser Application in arthroscopy. 1st Congress of International Musculoskeletal Laser Society; 1994
  • 10 Osmond C, Hecht P, Hayashi K. et al. Comparative effects of laser and radiofrequency energy on joint capsule. Clin Orthop Relat Res 2000; 375: 286-94.
  • 11 Hayashi K, Peters DM, Thabit III G. et al. The mechanism of joint capsule thermal modification in an in vitro sheep model. Clin Orthop Relat Res 2000; 370: 236-49.
  • 12 Schaefer SL, Ciarelli MJ, Arnoczky SP. et al. Tissue shrinkage with the holmium:yttrium aluminum garnet laser: A postoperative assessment of tissue length, stiffness, and structure. Am Ortho Soc Sports Med 1997; 25: 841-8.
  • 13 Hayashi K, Markel MD, Thabit III G. et al. The effect of nonablative laser energy on joint capsular properties: an in vitro mechanical study using a rabbitmodel. Am J Sports Med 1995; 23: 482-7.
  • 14 Hecht P, Hayashi K, Cooley AJ. et al. The thermal effect of monopolar radiofrequency energy on the properties of joint capsule: An in vivo histologic study using a sheep model. Am J Sports Med 1998; 26: 808-14.
  • 15 Shellock FG, Shields CL. Temperature changes associated with radiofrequency energy-induced heating of bovine capsular tissue: Evaluation of bipolar RF electrodes. Arthroscopy 2000; 16: 348-58.
  • 16 Nightingale E, Ball C, Cameron R. et al. Radio frequency energy effects on the mechanical properties of tendon and capsule. 47th Annual Meeting. Ortohopaedic Research Society; 2001
  • 17 Obrzut SL, Hecht P, Hayashi K. et al. The effect of radiofrequency energy on the length and tempera ture properties of the glenohumeral joint capsule. Arthroscopy 1998; 14: 395-400.
  • 18 Lopez MJ, Hayashi K, Vanderby R. et al. Effects of monopolar radiofrequency energy on ovine joint capsular mechanical properties. Clin Orthop Relat Res 2000; 374: 286-97.
  • 19 Lu Y, Hayashi K, Edwards III RB. et al. The effect of monopolar radiofrequency treatment pattern on joint capsular healing: In vitro and in vivo studies using and ovine model. Am J Sports Med 2000; 28: 711-9.
  • 20 Hecht P, Hayashi K, Lu Y. et al. Monopolar radio-frequency energy effects on joint capsular tissue: potential treatment for joint instability: An in vivo mechanical, morphological, and biochemical study using and ovine model. Am J Sports Med 1999; 27: 761-71.
  • 21 Hayashi K, Thabit III G, Massa KL. et al. The effect of thermal heating on the length and histologic properties of the glenohumeral joint capsule. Am J Sports Med 1997; 25: 107-12.
  • 22 Naseef GS, Foster RE, Trauner K. et al. The thermal properties of bovine joint capsule: The basic science of laser- and radiofrequency-induced capsular shrinkage. Am J Sports Med 1997; 25: 670-4.
  • 23 Hayashi K, Nieckarz JA, Thabit III G. et al. Effect of nonablative laser energy on the joint capsule: An in vivo rabbit study using a holmium: YAG laser. Lasers Surg Med 1997; 20: 164-71.
  • 24 Lu Y, Bogdanske J, Lopez M. et al. Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature. Arthroscopy 2005; 21: 592-6.
  • 25 Hayashi K, Massa KL, Thabit III G. et al. Histologic evaluation of the glenohumeral joint capsule afterthe laser-assisted capsular shift procedure for glenohumeral instability. Am J Sports Med 1999; 27: 162-7.
  • 26 Hayashi K, Hecht P, Thabit III G. et al. The biologic response to laser thermal modification in an in vivo sheep model. Clin Orthop Relat Res 2000; 373: 265-76.
  • 27 Lopez MJ, Hayashi K, Fanton GS. et al. The effect of radiofrequency energy on the ultrastructure of joint capsular collagen. Arthroscopy 1998; 14: 495-501.
  • 28 Hayashi K, Thabit III G, Bogdanske JJ. et al. The effect of nonablative laser energy on the ultrastructure of joint capsular collagen. Arthroscopy 1996; 12: 474-81.
  • 29 Pullin JG, Collier MA, Johnson LL. et al. Holmium:YAG laser-assisted capsular shift in a caninemodel: Intra-articularpressure andhistologic observations. J Shoulder Elbow Surg 1997; 6: 272-85.
  • 30 Rand JA, Gaffey TA. Effect of electrocautery on fresh human articular cartilage. Arthroscopy 1985; 1: 242-6.
  • 31 Trauner KB, Nishioka NS, Flotte T, et al. Acute and chronic response of articular cartilage to holmium:YAG laser irradiation. Clin Orthop Relat Res 1995; 310: 52-7.
  • 32 Turner As, Tippett JW, Powers BE. et al. Radiofrequency (electrosurgical) ablation of articular cartilage: A study in sheep. Arthroscopy 1998; 14: 585-91.
  • 33 Lu Y, Hayashi K, Hecht P. et al. The effect of monopolar radiofrequency energy on partial-thickness defects of articular cartilage. Arthroscopy 2000; 16: 527-36.
  • 34 Kaplan L, Uribe JW, Sasken H. et al. The acute effects of radiofrequency energy in articular cartilage: An in vitro study. Arthroscopy 2000; 16: 2-5.
  • 35 Edwards III RB, Lu Y, Nho S. et al. Thermal chondroplasty of chondromalacic human cartilage: An ex vivo comparison of bipolar and monopolar radiofrequency devices. Am J Sports Med 2002; 30: 90-7.
  • 36 Lu Y, Edwards III RB, Kalscheur VL. et al. Effect of bipolar radiofrequency energy on human articular cartilage. Comparison of confocal laser microscopy and light microscopy. Arthroscopy 2001; 17: 117-23.
  • 37 Lu Y, Edwards III RB, Cole BJ. et al. Thermal chondroplasty with radiofrequency energy An in vitro comparison of bipolar and monopolar radio-frequency devices. Am J Sports Med 2001; 29: 42-9.
  • 38 Edwards III RB, Lu Y, Rodriquez E. et al. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar andmonopolar radiofrequency devices. Arthroscopy 2002; 18: 339-46.
  • 39 Gundel J, Saskin H, Popvitz L. et al. The effect of bipolar radiofrequency energy on partial-thickness chondral defects in a sheep model. 20th Annual Meeting. Arthroscopy Association of North America; 2001
  • 40 Mainil-Varlet P, Monin D, Weiler C. et al. Quantification of laser-induced cartilage njury by confocal microscopy in an ex vivo model. J Bone Joint Surg Am 2001; 83: 566-71.
  • 41 Owens BD, Stickles BJ, Balikian P. et al. Prospective analysis of radiofrequency versus mechanical debridement ofisolated patellar chondral lesions. Arthroscopy 2002; 18: 151-5.
  • 42 Ryan A, Bertone A, Kaeding CC. et al. The effects of radiofrequency energy treatment on chondrocytes and matrix of fibrillated articular cartilage. Am J Sports Med 2003; 31: 386-91.
  • 43 Cook JL, Marberry KM, Kuroki K. et al. Assessment of cellular, biochemical, and histologic effects of bipolar radiofrequency treatment of canine articular cartilage. Am J Vet Res 2004; 65: 604-9.
  • 44 Horstman CL, McLaughlin RM, Elder SH. et al. Effects of monopolar and bipolar radiofrequency energy on rabbit articular cartilage with and without cosequin. 15th Annual ACVS Veterinary Symposium. 2005