Thromb Haemost 2002; 88(04): 648-654
DOI: 10.1055/s-0037-1613270
Review Article
Schattauer GmbH

Physical and Functional Interaction Between Cell-Surface Calreticulin and the Collagen Receptors Integrin α2β1 and Glycoprotein VI in Human Platelets

Catherine M. Elton
1   University of Cambridge, Department of Biochemistry, Cambridge, UK
,
Peter A. Smethurst
2   University of Cambridge, National Blood Service East Anglia, Cambridge, UK
,
Paul Eggleton
3   MRC Immunochemistry Unit, Department of Biochemistry, Oxford, UK
,
Rich W. Farndalerd
1   University of Cambridge, Department of Biochemistry, Cambridge, UK
› Author Affiliations
Further Information

Publication History

Received 14 November 2001

Accepted after resubmission 27 June 2002

Publication Date:
09 December 2017 (online)

Summary

Calreticulin is an abundant protein in the endoplasmic reticulum of most cells. In this study, flow cytometry and immunoprecipitation from surface-biotinylated platelets each provided direct evidence that calreticulin is also expressed on the surface of human platelets. Anti-calreticulin antibodies caused platelet activation, inducing Fc RIIa-independent platelet aggregation. In addition, these antibodies inhibited platelet adhesion to the integrin α2β1-specific ligands, GFOGER-GPP and monomeric collagen I, and to the glycoprotein VI-specific ligand, CRP. Inhibition of platelet adhesion to these ligands was independent of integrin αIIbβ3. In resting platelets, calreticulin was shown to interact with integrin α2β1 and glycoprotein VI. Together, these data demonstrate that surface calreticulin is associated with collagen receptors on the platelet surface, where it may play a role in the modulation of the platelet-collagen interaction.

Abbreviations: BSA: bovine serum albumin; cC1qR: complement component 1q receptor; CRP: collagen-related peptide; DTSSP: 3,3’-dithiobis (sulfosuccinimidyl propionate); ER: endoplasmic reticulum; GFOGER-GPP: GPC[GPP]5GFOGER[GPP]5GPC; GpVI: glycoprotein VI; HRP: horseradish peroxidase; PDI: protein disulfide isomerase.

 
  • References

  • 1 Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost 2001; 86: 189-97.
  • 2 Michalak M, Mariani P, Opas M. Calreticulin, a multifunctional Ca2+ binding chaperone of the endoplasmic reticulum. Biochem Cell Biol 1998; 76: 779-85.
  • 3 Johnson S, Michalak M, Opas M, Eggleton P. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 2001; 11: 122-9.
  • 4 Arosa FA, de Jesus O, Carmo AM, Porto G, de Sousa M. Calreticulin is expressed on the T cell surface of activated human peripheral blood T lymphocytes in association with MHCclass I molecules. FASEB J 1999; 13: A274-A.
  • 5 Eggleton P, Sastryl K, Ghebrehiwet B, Lieu TS, Zappi EG, Capra JD, Sonthiemer RD, Tauber AI. Detection of calreticulin on the surface of human neutrophils – immunological cross-reactivity with the C1q receptor. Blood 1993; 82: A509-A.
  • 6 Xiao GQ, Johnson RJ, Fine RE. Calreticulin exists on the surface of NG-108-15 cells. FASEB J 1998; 12: 624.
  • 7 Kwon MS, Park CS, Choi KR, Ahnn J, Kim JI, Eom SH, Kaufman SJ, Song WK. Calreticulin couples calcium release and calcium influx in integrinmediated calcium signaling. Mol Biol Cell 2000; 11: 1433-43.
  • 8 Zhu Q, Zelinka P, White T, Tanzer ML. Calreticulin-integrin bidirectional signaling complex. Biochem Biophys Res Commun 1997; 232: 354-8.
  • 9 Coppolino MG, Dedhar S. Ligand-specific, transient interaction between integrins and calreticulin during cell adhesion to extracellular matrix proteins is dependent upon phosphorylation dephosphorylation events. Biochem J 1999; 340: 41-50.
  • 10 Coppolino M, Leunghagesteijn C, Dedhar S, Wilkins J. Inducible interaction of integrin alpha(2)beta(1) with calreticulin – dependence on the activation state of the integrin. J Biol Chem 1995; 270: 23132-8.
  • 11 Kishore U, Reid KBM. C1q: structure, function, and receptors. Immunopharmacology 2000; 49: 159-70.
  • 12 Peerschke EIB, Ghebrehiwet B. Platelet receptors for the complement component C1q: Implications for hemostasis and thrombosis. Immunobiology 1998; 199: 239-49.
  • 13 Giocoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 2000; 275: 36358-68.
  • 14 Gray AJ, Park PW, Broekelmann TJ, Laurent GJ, Reeves JT, Stenmark KR, Mecham RP. The mitogenic effects of the B-beta chain of fibrinogen are mediated through cell-surface calreticulin. J Biol Chem 1995; 270: 26602-6.
  • 15 McDonnell JM, Jones GE, White TK, Tanzer ML. Calreticulin binding affinity for glycosylated laminin. J Biol Chem 1996; 271: 7891-4.
  • 16 White TK, Zhu QA, Tanzer ML. Cell-surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. J Biol Chem 1995; 270: 15926-9.
  • 17 Jorgensen CS, Heegaard NHH, Holm A, Hojrup P, Houen G. Polypeptide binding properties of the chaperone calreticulin. Eur J Biochem 2000; 267: 2945-54.
  • 18 Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ. The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 2000; 275: 35-40.
  • 19 Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin alpha 2 beta 1. Cell 2000; 101: 47-56.
  • 20 Knight CG, Morton LF, Onley DJ, Peachey AR, Ichinohe T, Okuma M, Farndale RW, Barnes MJ. Collagen-platelet interaction: Gly-Pro-Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovasc Res 1999; 41: 450-7.
  • 21 Morton LF, Hargreaves PG, Farndale RW, Young RD, Barnes MJ. Integrin alpha-2-beta-1-independent activation of platelets by simple collagen-like peptides – collagen tertiary (triplehelical) and quaternary (polymeric) structures are sufficient alone for alpha-2-beta-1-independent platelet reactivity. Biochem J 1995; 306: 337-44.
  • 22 Morton LF, Fitzsimmons CM, Rauterberg J, Barnes MJ. Platelet-reactive sites in collagen collagen I and collagen III possess different aggegatory sites. Biochem J 1987; 248: 483-7.
  • 23 Morton LF, Peachey AR, Zijenah LS, Goodall AH, Humphries MJ, Barnes MJ. Conformation-dependent platelet adhesion to collagen involving integrin α2β1-mediated and other mechanisms: multiple α2β1 recognition sites in collagen type I. Biochem J 1994; 299: 791-7.
  • 24 Hargreaves PG, Licking EF, Sargeant P, Sage SO, Barnes MJ, Farndale RW. The tyrosine kinase inhibitors, genistein and methyl 2,5-dihydroxycinnamate, inhibit the release of (H-3)arachidonate from human platelets stimulated by thrombin or collagen. Thromb Haemost 1994; 72: 634-42.
  • 25 Onley DJ, Knight CG, Tuckwell DS, Barnes MJ, Farndale RW. Micromolar Ca2+ concentrations are essential for Mg2+-dependent binding of collagen by the integrin alpha(2)beta(1) in human platelets. J Biol Chem 2000; 275: 24560-4.
  • 26 Peerschke EIB, Ghebrehiwet B. Identification and partial characterization of human-platelet Clq binding-sites. J Immunol 1988; 141: 3505-11.
  • 27 Jandrot-Perrus M, Lagrue AH, Okuma M, Bon C. Adhesion and activation of human platelets induced by convulxin involve glycoprotein VI and integrin alpha(2)beta(1). J Biol Chem 1997; 272: 27035-41.
  • 28 Kunicki TJ, Orchekowski R, Annis D, Honda Y. Variability of integrin alpha 2 beta 1 activity on human platelets. Blood 1993; 82: 2693-703.
  • 29 Essex DW, Li MR. A polyclonal antibody to protein disulfide isomerase induces platelet aggregation and secretion. Thromb Res 1999; 96: 445-50.
  • 30 Slupsky JR, Kamiguti AS, Rhodes NP, Cawley JC, Shaw ARE, Zuzel M. The platelet antigens CD9, CD42 and integrin alpha(IIb)beta(IIIa) can be topographically associated and transduce functionally similar signals. Eur J Biochem 1997; 244: 168-75.
  • 31 Denning GM, Leidal KG, Holst VA, Iyer SS, Pearson DW, Clark JR, Nauseef WM, Clark RA. Calreticulin biosynthesis and processing in human myeloid cells: Demonstration of signal peptide cleavage and N-glycosylation. Blood 1997; 90: 372-81.
  • 32 Coppolino MG, Demaurex N, Grinstein S, St Arnoud R, Dedhar S. Calreticulin-knockout embryonic stem cells are deficient in integrin-mediated adhesion but not calcium stores. Mol Biol Cell 1996; 07: 1419.
  • 33 Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St Arnaud R, Dedhar S. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 1997; 386: 843-7.
  • 34 Peerschke EIB, Ghebrehiwet B. Platelet C1q receptor interactions with collagen-coated and C1qcoated surfaces. J Immunol 1990; 145: 2984-8.
  • 35 Phillips DR, Charo IF, Scarborough RM. GPIIb-IIIa: the responsive integrin. Cell 1991; 65: 359-62.
  • 36 Moroi M, Onitsuka I, Imaizumi T, Jung SM. Involvement of activated integrin alpha(2)beta(1) in the firm adhesion of platelets onto a surface of immobilized collagen under flow conditions. Thromb Haemost 2000; 83: 769-76.
  • 37 Jung SM, Moroi M. Signal-transducing mechanisms involved in activation of the platelet collagen receptor integrin alpha(2)beta(1). J Biol Chem 2000; 275: 8016-26.
  • 38 Elliott JG, Oliver JD, High S. The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J Biol Chem 1997; 272: 13849-55.
  • 39 Corbett EF, Oikawa K, Francois P, Tessier DC, Kay C, Bergeron JJM, Thomas DY, Krause KH, Michalak M. Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem 1999; 274: 6203-11.
  • 40 Lahav J, Gofer-Dadosh N, Luboshitz J, Hess O, Shaklai M. Protein disulfide isomerase mediates integrin-dependent adhesion. FEBS Lett 2000; 475: 89-92.