Semin Thromb Hemost 2017; 43(2): 191-199
DOI: 10.1055/s-0036-1585077
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

α2-Antiplasmin: New Insights and Opportunities for Ischemic Stroke

Guy L. Reed
1   Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
,
Aiilyan K. Houng
1   Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
,
Satish Singh
1   Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
,
Dong Wang
1   Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
› Author Affiliations
Further Information

Publication History

Publication Date:
29 July 2016 (online)

Abstract

Thrombotic vascular occlusion is the leading cause of ischemic stroke. High blood levels of α2-antiplasmin (a2AP), an ultrafast, covalent inhibitor of plasmin, have been linked in humans to increased risk of ischemic stroke and failure of tissue plasminogen activator (tPA) therapy. Consistent with these observations, a2AP neutralizes the therapeutic benefit of tPA therapy in experimental stroke. In addition, a2AP has deleterious, dose-related effects on ischemic brain injury in the absence of therapy. Experimental therapeutic inactivation of a2AP markedly reduces microvascular thrombosis, ischemic brain injury, brain swelling, brain hemorrhage, and death after thromboembolic stroke. These data provide new insights into the critical importance of a2AP in the pathogenesis of ischemic brain injury and suggest that transiently inactivating a2AP may have therapeutic value in ischemic stroke.

 
  • References

  • 1 Collen D. Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma. Eur J Biochem 1976; 69 (1) 209-216
  • 2 Moroi M, Aoki N. Isolation and characterization of alpha2-plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator-induced clot lysis. J Biol Chem 1976; 251 (19) 5956-5965
  • 3 Müllertz S, Clemmensen I. The primary inhibitor of plasmin in human plasma. Biochem J 1976; 159 (3) 545-553
  • 4 Edy J, Collen D. The interaction in human plasma of antiplasmin, the fast-reacting plasmin inhibitor, with plasmin, thrombin, trypsin and chymotrypsin. Biochim Biophys Acta 1977; 484 (2) 423-432
  • 5 Aoki N, Moroi M, Matsuda M, Tachiya K. The behavior of alpha2-plasmin inhibitor in fibrinolytic states. J Clin Invest 1977; 60 (2) 361-369
  • 6 Sakata Y, Aoki N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 1982; 69 (3) 536-542
  • 7 Reed GL, Matsueda GR, Haber E. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin. Thromb Haemost 1992; 68 (3) 315-320
  • 8 Abdul S, Leebeek FW, Rijken DC, Uitte de Willige S. Natural heterogeneity of α2-antiplasmin: functional and clinical consequences. Blood 2016; 127 (5) 538-545
  • 9 Wiman B, Collen D. On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem 1978; 84 (2) 573-578
  • 10 Barker R, Kehoe PG, Love S. Activators and inhibitors of the plasminogen system in Alzheimer's disease. J Cell Mol Med 2012; 16 (4) 865-876
  • 11 Collen D, Wiman B. Turnover of antiplasmin, the fast-acting plasmin inhibitor of plasma. Blood 1979; 53 (2) 313-324
  • 12 Collen D, Bounameaux H, De Cock F, Lijnen HR, Verstraete M. Analysis of coagulation and fibrinolysis during intravenous infusion of recombinant human tissue-type plasminogen activator in patients with acute myocardial infarction. Circulation 1986; 73 (3) 511-517
  • 13 Kluft C, Los P, Jie AF , et al. The mutual relationship between the two molecular forms of the major fibrinolysis inhibitor alpha-2-antiplasmin in blood. Blood 1986; 67 (3) 616-622
  • 14 Meltzer ME, Doggen CJ, de Groot PG, Rosendaal FR, Lisman T. Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men. Blood 2010; 116 (4) 529-536
  • 15 Suri MF, Yamagishi K, Aleksic N, Hannan PJ, Folsom AR. Novel hemostatic factor levels and risk of ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc Dis 2010; 29 (5) 497-502
  • 16 Feinberg WM, Macy E, Cornell ES , et al; Stroke Prevention in Atrial Fibrillation Investigators. Plasmin-alpha2-antiplasmin complex in patients with atrial fibrillation. Thromb Haemost 1999; 82 (1) 100-103
  • 17 Cucuianu M, Knauer O, Roman S. Alpha 2-antiplasmin, plasminogen activator inhibitor (PAI) and dilute blood clot lysis time in selected disease states. Thromb Haemost 1991; 66 (5) 586-591
  • 18 Lisman T, Bakhtiari K, Adelmeijer J, Meijers JC, Porte RJ, Stravitz RT. Intact thrombin generation and decreased fibrinolytic capacity in patients with acute liver injury or acute liver failure. J Thromb Haemost 2012; 10 (7) 1312-1319
  • 19 Teger-Nilsson AC, Gyzander E, Myrwold H, Noppa H, Olsson R, Wallmo L. Determination of fast-acting plasmin inhibitor (alpha2-antiplasmin) in plasma from patients with tendency to thrombosis and increased fibrinolysis. Haemostasis 1978; 7 (2–3) 155-157
  • 20 Law RH, Sofian T, Kan WT , et al. X-ray crystal structure of the fibrinolysis inhibitor alpha2-antiplasmin. Blood 2008; 111 (4) 2049-2052
  • 21 Lee KN, Jackson KW, Christiansen VJ, Dolence EK, McKee PA. Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor α2-antiplasmin. J Thromb Haemost 2011; 9 (5) 987-996
  • 22 Christiansen VJ, Jackson KW, Lee KN, McKee PA. The effect of a single nucleotide polymorphism on human alpha 2-antiplasmin activity. Blood 2007; 109 (12) 5286-5292
  • 23 Leebeek FW, Kluft C, Knot EA, Los P, Cohen AF, Six AJ. Plasmin inhibitors in the prevention of systemic effects during thrombolytic therapy: specific role of the plasminogen-binding form of alpha 2-antiplasmin. J Am Coll Cardiol 1990; 15 (6) 1212-1220
  • 24 Uitte de Willige S, Miedzak M, Carter AM , et al. Proteolytic and genetic variation of the alpha-2-antiplasmin C-terminus in myocardial infarction. Blood 2011; 117 (24) 6694-6701
  • 25 Reed III GL, Matsueda GR, Haber E. Synergistic fibrinolysis: combined effects of plasminogen activators and an antibody that inhibits alpha 2-antiplasmin. Proc Natl Acad Sci U S A 1990; 87 (3) 1114-1118
  • 26 Reed III GL, Singer DE, Picard EH, DeSanctis RW. Stroke following coronary-artery bypass surgery. A case-control estimate of the risk from carotid bruits. N Engl J Med 1988; 319 (19) 1246-1250
  • 27 Reed III GL, Matsueda GR, Haber E. Inhibition of clot-bound alpha 2-antiplasmin enhances in vivo thrombolysis. Circulation 1990; 82 (1) 164-168
  • 28 Butte AN, Houng AK, Jang IK, Reed GL. Alpha 2-antiplasmin causes thrombi to resist fibrinolysis induced by tissue plasminogen activator in experimental pulmonary embolism. Circulation 1997; 95 (7) 1886-1891
  • 29 Matsuno H, Okada K, Ueshima S, Matsuo O, Kozawa O. Alpha2-antiplasmin plays a significant role in acute pulmonary embolism. J Thromb Haemost 2003; 1 (8) 1734-1739
  • 30 Weitz JI, Leslie B, Hirsh J, Klement P. Alpha 2-antiplasmin supplementation inhibits tissue plasminogen activator-induced fibrinogenolysis and bleeding with little effect on thrombolysis. J Clin Invest 1993; 91 (4) 1343-1350
  • 31 Ho CH, Wang SP. Serial thrombolysis-related changes after thrombolytic therapy with TPA in patients with acute myocardial infarction. Thromb Res 1990; 58 (3) 331-341
  • 32 Rao AK, Pratt C, Berke A , et al. Thrombolysis in Myocardial Infarction (TIMI) Trial—phase I: hemorrhagic manifestations and changes in plasma fibrinogen and the fibrinolytic system in patients treated with recombinant tissue plasminogen activator and streptokinase. J Am Coll Cardiol 1988; 11 (1) 1-11
  • 33 Williams EC. Plasma alpha 2-antiplasmin activity. Role in the evaluation and management of fibrinolytic states and other bleeding disorders. Arch Intern Med 1989; 149 (8) 1769-1772
  • 34 Favier R, Aoki N, de Moerloose P. Congenital alpha(2)-plasmin inhibitor deficiencies: a review. Br J Haematol 2001; 114 (1) 4-10
  • 35 Yoshioka A, Kamitsuji H, Takase T , et al. Congenital deficiency of alpha 2-plasmin inhibitor in three sisters. Haemostasis 1982; 11 (3) 176-184
  • 36 Harish VC, Zhang L, Huff JD, Lawson H, Owen J. Isolated antiplasmin deficiency presenting as a spontaneous bleeding disorder in a 63-year-old man. Blood Coagul Fibrinolysis 2006; 17 (8) 673-675
  • 37 Aoki N. The past, present and future of plasmin inhibitor. Thromb Res 2005; 116 (6) 455-464
  • 38 Lijnen HR, Okada K, Matsuo O, Collen D, Dewerchin M. Alpha2-antiplasmin gene deficiency in mice is associated with enhanced fibrinolytic potential without overt bleeding. Blood 1999; 93 (7) 2274-2281
  • 39 Matsuno H, Kozawa O, Okada K, Ueshima S, Matsuo O, Uematsu T. Inhibitors of fibrinolytic components play different roles in the formation and removal of arterial thrombus in mice. J Cardiovasc Pharmacol 2002; 39 (2) 278-286
  • 40 Houng AK, Wang D, Reed GL. Reversing the deleterious effects of α2-antiplasmin on tissue plasminogen activator therapy improves outcomes in experimental ischemic stroke. Exp Neurol 2014; 255: 56-62
  • 41 Reed GL, Houng AK, Wang D. Microvascular thrombosis, fibrinolysis, ischemic injury, and death after cerebral thromboembolism are affected by levels of circulating α2-antiplasmin. Arterioscler Thromb Vasc Biol 2014; 34 (12) 2586-2593
  • 42 Martí-Fàbregas J, Borrell M, Cocho D , et al. Hemostatic markers of recanalization in patients with ischemic stroke treated with rt-PA. Neurology 2005; 65 (3) 366-370
  • 43 Isenegger J, Meier N, Lämmle B , et al. D-dimers predict stroke subtype when assessed early. Cerebrovasc Dis 2010; 29 (1) 82-86
  • 44 Lane DA, Wolff S, Ireland H, Gawel M, Foadi M. Activation of coagulation and fibrinolytic systems following stroke. Br J Haematol 1983; 53 (4) 655-658
  • 45 Uchiyama S, Yamazaki M, Hara Y, Iwata M. Alterations of platelet, coagulation, and fibrinolysis markers in patients with acute ischemic stroke. Semin Thromb Hemost 1997; 23 (6) 535-541
  • 46 Kataoka S, Hirose G, Hori A, Shirakawa T, Saigan T. Activation of thrombosis and fibrinolysis following brain infarction. J Neurol Sci 2000; 181 (1–2) 82-88
  • 47 Oláh L, Misz M, Kappelmayer J , et al. Natural coagulation inhibitor proteins in young patients with cerebral ischemia. Cerebrovasc Dis 2001; 12 (4) 291-297
  • 48 Ono N, Koyama T, Suehiro A, Oku K, Fujikake K, Kakishita E. Clinical significance of new coagulation and fibrinolytic markers in ischemic stroke patients. Stroke 1991; 22 (11) 1369-1373
  • 49 Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333 (24) 1581-1587
  • 50 Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998; 4 (2) 228-231
  • 51 Nagai N, De Mol M, Lijnen HR, Carmeliet P, Collen D. Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation 1999; 99 (18) 2440-2444
  • 52 Nagai N, De Mol M, Van Hoef B, Verstreken M, Collen D. Depletion of circulating alpha(2)-antiplasmin by intravenous plasmin or immunoneutralization reduces focal cerebral ischemic injury in the absence of arterial recanalization. Blood 2001; 97 (10) 3086-3092
  • 53 Nagai N, Vanlinthout I, Collen D. Comparative effects of tissue plasminogen activator, streptokinase, and staphylokinase on cerebral ischemic infarction and pulmonary clot lysis in hamster models. Circulation 1999; 100 (25) 2541-2546
  • 54 Tabrizi P, Wang L, Seeds N , et al. Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol 1999; 19 (11) 2801-2806
  • 55 Albers GW. Antithrombotic agents in cerebral ischemia. Am J Cardiol 1995; 75 (6) 34B-38B
  • 56 Fieschi C, Argentino C, Lenzi GL, Sacchetti ML, Toni D, Bozzao L. Clinical and instrumental evaluation of patients with ischemic stroke within the first six hours. J Neurol Sci 1989; 91 (3) 311-321
  • 57 Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999; 30 (12) 2752-2758
  • 58 Lijnen HR, van Hoef B, Beelen V, Collen D. Characterization of the murine plasma fibrinolytic system. Eur J Biochem 1994; 224 (3) 863-871
  • 59 Sazonova IY, Thomas BM, Gladysheva IP, Houng AK, Reed GL. Fibrinolysis is amplified by converting alpha-antiplasmin from a plasmin inhibitor to a substrate. J Thromb Haemost 2007; 5 (10) 2087-2094
  • 60 Kilic E, Hermann DM, Hossmann KA. Recombinant tissue-plasminogen activator-induced thrombolysis after cerebral thromboembolism in mice. Acta Neuropathol 2000; 99 (3) 219-222
  • 61 Orset C, Macrez R, Young AR , et al. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke 2007; 38 (10) 2771-2778
  • 62 Hara T, Mies G, Hossmann KA. Effect of thrombolysis on the dynamics of infarct evolution after clot embolism of middle cerebral artery in mice. J Cereb Blood Flow Metab 2000; 20 (10) 1483-1491
  • 63 Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 2008; 112 (9) 3555-3562
  • 64 Momi S, Tantucci M, Van Roy M, Ulrichts H, Ricci G, Gresele P. Reperfusion of cerebral artery thrombosis by the GPIb-VWF blockade with the Nanobody ALX-0081 reduces brain infarct size in guinea pigs. Blood 2013; 121 (25) 5088-5097
  • 65 Heye N, Paetzold C, Cervós-Navarro J. The role of microthrombi and microcirculatory factors in localization and evolution of focal cerebral ischemia. Neurosurg Rev 1991; 14 (1) 7-16
  • 66 Okada Y, Copeland BR, Fitridge R, Koziol JA, del Zoppo GJ. Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 1994; 25 (9) 1847-1853 , discussion 1853–1854
  • 67 del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 2003; 23 (8) 879-894
  • 68 Hoffmeister HM, Szabo S, Kastner C , et al. Thrombolytic therapy in acute myocardial infarction: comparison of procoagulant effects of streptokinase and alteplase regimens with focus on the kallikrein system and plasmin. Circulation 1998; 98 (23) 2527-2533
  • 69 Gross S, Janssen SW, de Vries B, Terao E, Daas A, Buchheit KH. Collaborative study for the validation of alternative in vitro potency assays for human tetanus immunoglobulin. Pharmeur Bio Sci Notes 2009; 2009 (1) 11-25
  • 70 Singh S, Houng AK, Wang D, Reed GL. Physiologic variations in blood plasminogen levels affect outcomes after acute cerebral thromboembolism in mice: a pathophysiologic role for microvascular thrombosis. J Thromb Haemost 2016; DOI: 10.1111/jth.13390..
  • 71 Cooper JA, Lo SK, Malik AB. Fibrin is a determinant of neutrophil sequestration in the lung. Circ Res 1988; 63 (4) 735-741
  • 72 Goel MS, Diamond SL. Neutrophil enhancement of fibrin deposition under flow through platelet-dependent and -independent mechanisms. Arterioscler Thromb Vasc Biol 2001; 21 (12) 2093-2098
  • 73 Rosell A, Cuadrado E, Ortega-Aznar A, Hernández-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 2008; 39 (4) 1121-1126
  • 74 Zhao BQ, Wang S, Kim HY , et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 2006; 12 (4) 441-445
  • 75 Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol 2008; 8 (1) 82-89
  • 76 Aoki T, Sumii T, Mori T, Wang X, Lo EH. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 2002; 33 (11) 2711-2717
  • 77 Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 2000; 20 (12) 1681-1689
  • 78 Reed III GL, Matsueda GR, Haber E. Acceleration of plasma clot lysis by an antibody to alpha 2-antiplasmin. Trans Assoc Am Physicians 1988; 101: 250-256
  • 79 Mimuro J, Koike Y, Sumi Y, Aoki N. Monoclonal antibodies to discrete regions in alpha 2-plasmin inhibitor. Blood 1987; 69 (2) 446-453
  • 80 Reed GL. Functional characterization of monoclonal antibody inhibitors of alpha 2-antiplasmin that accelerate fibrinolysis in different animal plasmas. Hybridoma 1997; 16 (3) 281-286
  • 81 Reed GL, Houng AK. The contribution of activated factor XIII to fibrinolytic resistance in experimental pulmonary embolism. Circulation 1999; 99 (2) 299-304
  • 82 Suzuki Y, Chen F, Ni Y, Marchal G, Collen D, Nagai N. Microplasmin reduces ischemic brain damage and improves neurological function in a rat stroke model monitored with MRI. Stroke 2004; 35 (10) 2402-2406
  • 83 Pakola S, Cahillane G, Stassen JM, Lijnen HR, Verhamme P. Neutralization of alpha(2)-antiplasmin by microplasmin: a randomized, double-blind, placebo-controlled, ascending-dose study in healthy male volunteers. Clin Ther 2009; 31 (8) 1688-1706
  • 84 Thijs VN, Peeters A, Vosko M , et al. Randomized, placebo-controlled, dose-ranging clinical trial of intravenous microplasmin in patients with acute ischemic stroke. Stroke 2009; 40 (12) 3789-3795
  • 85 Marder VJ. Historical perspective and future direction of thrombolysis research: the re-discovery of plasmin. J Thromb Haemost 2011; 9 (Suppl. 01) 364-373
  • 86 Marder VJ, Jahan R, Gruber T, Goyal A, Arora V. Thrombolysis with plasmin: implications for stroke treatment. Stroke 2010; 41 (10, Suppl): S45-S49
  • 87 Marder VJ, Comerota AJ, Shlansky-Goldberg RD , et al. Safety of catheter-delivered plasmin in patients with acute lower extremity arterial or bypass graft occlusion: phase I results. J Thromb Haemost 2012; 10 (6) 985-991
  • 88 Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther 2012; 11 (2) 257-266