Z Orthop Unfall 2015; 153(04): 423-432
DOI: 10.1055/s-0035-1545952
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Orthopädische Behandlung bei Myelomeningozele

Orthopaedic Treatment for Patients with Myelomeningocele
S. Lebek
1   CMSC, Kinder- und Neuroorthopädie, Charité – Universitätsmedizin Berlin
,
U. Seidel
2   SPZ Neuropädiatrie, Charité – Universitätsmedizin Berlin
,
M. Damerau
3   Gottinger Orthopädietechnik, Gottinger Orthopädietechnik, Berlin
,
C. Perka
4   CMSC, Klinik für Orthopädie, Charité – Universitätsmedizin Berlin
,
J. F. Funk
1   CMSC, Kinder- und Neuroorthopädie, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
20 May 2015 (online)

Zusammenfassung

Hintergrund: Es werden immer weniger Kinder mit Myelomeningozele (MMC) geboren, die dank der erreichten Fortschritte bei der Behandlung und infolge der verbesserten Fürsorge das Erwachsenenalter erreichen und orthopädisch betreut werden müssen. Die orthopädische Behandlung zielt auf die Verbesserung oder den Erhalt der Funktion und muss interdisziplinär erfolgen. Methode: In dieser Übersichtsarbeit werden die aktuellen in der Literatur empfohlenen orthopädietechnischen und operativen Therapiekonzepte dargestellt. Diese Darstellung erfolgt im Kontext funktioneller Aspekte in einzelnen für die motorische Entwicklung wichtigen Lebensabschnitten. Orthopädisches Behandlungskonzept: In den ersten 2 Lebensjahren muss vor allem die Mobilität der Kinder mit MMC durch die Kombination von Physiotherapie und optimaler Orthesenversorgung gefördert werden. Danach richtet sich die Orthesenversorgung nach der Muskelkraft, entstehenden Fehlstellungen, assoziierten ZNS-Fehlbildungen, Shunt-Komplikationen, Adipositas, Perzeptions- und Propriozeptionseinschränkungen und der Motivation und den Erwartungen der Kinder und Eltern/Betreuer. Orthopädische Operationen werden zum Erhalt der Orthesenfähigkeit und zur Vermeidung von Druckstellen mit möglichst kurzer Immobilisationsphase durchgeführt. Pathologische Frakturen sind nicht selten. Bei Verdacht ist eine röntgenologische Diagnostik indiziert, um zusätzliche Deformitäten durch zügige Behandlung zu vermeiden. Schlussfolgerung: Das Ziel der orthopädischen Behandlung besteht in der Vermeidung der Progredienz der primären muskuloskeletalen Veränderungen und der Sekundärschäden. Durch die interdisziplinäre Zusammenarbeit aller Behandler kann eine Funktionsverbesserung oder der Erhalt durch orthopädische Maßnahmen erreicht werden.

Abstract

Background: Due to prenatal diagnostic and folic acid prophylaxis less children with myelomeningocele are now being born. But they become older and need increasingly more orthopaedic care. The orthopaedic care is aimed at the improvement or the preservation of function. Method: In this review the current knowledge from the literature and our approach are presented. This is done in the context of the functional aspects within certain periods of life. Treatment Concept: In the first two years of life, the mobility of MMC children is supported by physiotherapy and orthoses irrespective of the level of the lesion. Afterwards, the optimal orthoses are chosen depending on the muscle power, emerging bone deformities, associated CNS malformation, shunt revisions, obesity and limitations in perception as well as the childʼs motivation. At school age, it is paramount to encourage independence. Orthotic treatment should be continued as long as the children benefit from it. Orthopaedic operations serve the orthosis fitting and the avoidance of pressure sores. Pathological fractures are common. They should be rapidly recognised in order to avoid further bony deformities. Conclusion: The aim of any orthopaedic treatment consists of the avoidance of musculoskeletal deformities in order to support the patientʼs self employment.

 
  • Literatur

  • 1 Wright JG. Hip and spine surgery is of questionable value in spina bifida: an evidence-based review. Clin Orthop Relat Res 2011; 469: 1258-1264
  • 2 Seitzberg A, Lind M, Biering-Sørensen F. Ambulation in adults with myelomeningocele. Is it possible to predict the level of ambulation in early life?. Childs Nerv Syst 2008; 24: 231-237
  • 3 Bartonek A, Saraste H. Factors influencing ambulation in myelomeningocele: a cross-sectional study. Dev Med Child Neurol 2001; 43: 253-260
  • 4 Damerau M, Michael T, Günther N. Erfahrungen zur läsionssezifischen Orthesenversorgung bei Patienten mit Spina bifida nach dem Berliner Konzept. OT 2013; 64: 1-7
  • 5 Ivanyi B, Schoenmakers M, van Veen N et al. The effects of orthoses, footwear, and walking aids on the walking ability of children and adolescents with spina bifida: a systematic review using International Classification of Functioning, Disability and Health for children and youth (ICF-CY) as a reference framework. Prosthet Orthot Int 2014; [Epub ahead of print]
  • 6 Mazur JM, Shurtleff D, Menelaus M et al. Orthopaedic management of high-level spina bifida. Early walking compared with early use of a wheelchair. J Bone Joint Surg Am 1989; 71: 56-61
  • 7 Gabrieli AP, Vankoski SJ, Dias LS et al. Gait analysis in low lumbar myelomeningocele patients with unilateral hip dislocation or subluxation. J Pediatr Orthop 2003; 23: 330-334
  • 8 Akbar M, Bresch B, Seyler TM et al. Management of orthopaedic sequelae of congenital spinal disorders. J Bone Joint Surg Am 2009; 91 (Suppl. 06) S87-S100
  • 9 Moroney PJ, Noël J, Fogarty EE et al. A single-center prospective evaluation of the Ponseti method in nonidiopathic congenital talipes equinovarus. J Pediatr Orthop 2012; 32: 636-640
  • 10 Swaroop VT, Dias L. Orthopaedic management of spina bifida – part II: foot and ankle deformities. J Child Orthop 2011; 5: 403-414
  • 11 Alaee F, Boehm S, Dobbs MB. A new approach to the treatment of congenital vertical talus. J Child Orthop 2007; 1: 165-174
  • 12 Swaroop VT, Dias L. Orthopedic management of spina bifida. Part I: hip, knee, and rotational deformities. J Child Orthop 2009; 3: 441-449
  • 13 Park KB, Park HW, Joo SY, Kim HW. Surgical treatment of calcaneal deformity in a select group of patients with myelomeningocele. J Bone Joint Surg Am 2008; 90: 2149-2159
  • 14 de Amoreira Gepp R, Quiroga MR, Gomes CR et al. Kyphectomy in meningomyelocele children: surgical technique, risk analysis, and improvement of kyphosis. Childs Nerv Syst 2013; 29: 1137-1141
  • 15 Lim R, Dias L, Vankoski S et al. Valgus knee stress in lumbosacral myelomeningocele: a gait-analysis evaluation. J Pediatr Orthop 1998; 18: 428-433
  • 16 Thomas SS, Buckon CE, Melchionni J et al. Longitudinal assessment of oxygen cost and velocity in children with myelomeningocele: comparison of the hip-knee-ankle-foot orthosis and the reciprocating gait orthosis. J Pediatr Orthop 2001; 21: 798-803
  • 17 Swank M, Dias L. Myelomeningocele: a review of the orthopaedic aspects of 206 patients treated from birth with no selection criteria. Dev Med Child Neurol 1992; 34: 1047-1052
  • 18 Bartonek A. Motor development toward ambulation in preschool children with myelomeningocele: a prospective study. Pediatr Phys Ther 2010; 22: 52-60
  • 19 Dagenais LM, Lahay ER, Stueck KA et al. Effects of electrical stimulation, exercise training and motor skills training on strength of children with meningomyelocele: a systematic review. Phys Occup Ther Pediatr 2009; 29: 445-463
  • 20 Stark C, Hoyer-Kuhn HK, Semler O et al. Neuromuscular training on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program. Child Nerv Syst 2015; 31: 301-309
  • 21 Shurtleff DB, Menelaus MB, Staheli LT et al. Natural history of flexion deformity of the hip in myelodysplasia. J Pediatr Orthop 1986; 6: 666-673
  • 22 Broughton NS, Graham G, Menelaus MB. The high incidence of foot deformity in patients with high-level spina bifida. J Bone Joint Surg Br 1994; 76: 548-550
  • 23 Glard Y, Launay F, Viehweger E et al. Neurological classification in myelomeningocele as a spine deformity predictor. J Pediatr Orthop B 2007; 16: 287-292
  • 24 Broughton NS, Menelaus MB, Cole WG et al. The natural history of hip deformity in myelomeningocele. J Bone Joint Surg Br 1993; 75: 760-763
  • 25 Menelaus MB. The hip in myelomeningocele. Management directed towards a minimum number of operations and a minimum period of immobilisation. J Bone Joint Surg Br 1976; 58: 448-452
  • 26 Asher M, Olson J. Factors affecting the ambulatory status of patients with spina bifida cystica. J Bone Joint Surg Am 1983; 65: 350-356
  • 27 Heeg M, Broughton NS, Menelaus MB. Bilateral dislocation of the hip in spina bifida: a long-term follow-up study. J Pediatr Orthop 1998; 18: 434-436
  • 28 Fraser RK, Bourke HM, Broughton NS et al. Unilateral dislocation of the hip in spina bifida. A long-term follow-up. J Bone Joint Surg Br 1995; 77: 615-619
  • 29 Flynn JM, Herrera-Soto JA, Ramirez NF et al. Clubfoot release in myelodysplasia. J Pediatr Orthop B 2004; 13: 259-262
  • 30 Park KB, Park HW, Joo SY et al. Surgical treatment of calcaneal deformity in a select group of patients with myelomeningocele. J Bone Joint Surg Am 2008; 90: 2149-2159
  • 31 Legaspi J, Li YH, Chow W et al. Talectomy in patients with recurrent deformity in club foot. A long-term follow-up study. J Bone Joint Surg Br 2001; 83: 384-387
  • 32 Mazzocca AD, Thomson JD, Deluca PA et al. Comparison of the posterior approach versus the dorsal approach in the treatment of congenital vertical talus. J Pediatr Orthop 2001; 21: 212-217
  • 33 Akbarnia BA, Cheung K, Noordeen H et al. Next generation of growth-sparing techniques: preliminary clinical results of a magnetically controlled growing rod in 14 patients with early-onset scoliosis. Spine (Phila Pa 1976) 2013; 38: 665-670
  • 34 Samdani AF, Fine AL, Sagoo SS et al. A patient with myelomeningocele: is untethering necessary prior to scoliosis correction?. Neurosurg Focus 2010; 29: 1-3
  • 35 McDonald CM, Jaffe KM, Shurtleff DB. Assessment of muscle strength in children with meningomyelocele: accuracy and stability of measurements over time. Arch Phys Med Rehabil 1986; 67: 855-861
  • 36 Bruinings AL, van den Berg-Emons HJ, Buffart LM et al. Energy cost and physical strain of daily activities in adolescents and young adults with myelomeningocele. Dev Med Child Neurol 2007; 49: 672-677
  • 37 Wolf SI, Alimusaj M, Rettig O et al. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele. Gait Post 2008; 28: 175-177
  • 38 Buffart LM, van den Berg-Emons RJ, van Wijlen-Hempel MS et al. Health-related physical fitness of adolescents and young adults with myelomeningocele. Eur J Appl Physiol 2008; 103: 181-188
  • 39 Walker JL, Ryan SW, Coburn TR. Does threshold nighttime electrical stimulation benefit children with spina bifida? A pilot study. Clin Orthop Relat Res 2011; 469: 1297-1301
  • 40 Semler O, Fricke O, Vezyroglou K et al. Preliminary results on the mobility after whole body vibration in immobilized children and adolescents. J Musculoskelet Neuronal Interact 2007; 7: 77-81
  • 41 Dosa NP, Eckrich M, Katz DA et al. Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. J Spinal Cord Med 2007; 30: 5-9
  • 42 Roberts JA, Bennet GC, MacKenzie JR. Physeal widening in children with myelomeningocele. J Bone Joint Surg Br 1989; 71: 30-32
  • 43 Moen TC, Dias L, Swaroop VT et al. Radical posterior capsulectomy improves sagittal knee motion in crouch gait. Clin Orthop Relat Res 2011; 469: 1286-1290
  • 44 Al-Aubaidi Z, Lundgaard B, Pedersen NW. Anterior distal femoral hemiepiphysiodesis in the treatment of fixed knee flexion contracture in neuromuscular patients. J Child Orthop 2012; 6: 313-318
  • 45 Mubarak SJ, Van Valin SE. Osteotomies of the foot for cavus deformities in children. J Pediatr Orthop 2009; 29: 294-299
  • 46 Segev E, Ezra E, Yaniv M et al. V osteotomy and Ilizarov technique for residual idiopathic or neurogenic clubfeet. J Orthop Surg (Hong Kong) 2008; 16: 215-219
  • 47 Müller EB, Nordwall A, Odén A. Progression of scoliosis in children with myelomeningocele. Spine (Phila Pa 1976) 1994; 19: 147-150
  • 48 Schoenmakers MA, Gulmans VA, Gooskens RH et al. Spinal fusion in children with spina bifida: influence on ambulation level and functional abilities. Eur Spine J 2005; 14: 415-422
  • 49 Patel J, Walker JL, Talwalkar VR et al. Correlation of spine deformity, lung function, and seat pressure in spina bifida. Clin Orthop Relat Res 2011; 469: 1302-1307
  • 50 Bachy M, Bouyer B, Vialle R. Infections after spinal correction and fusion for spinal deformities in childhood and adolescence. Int Orthop 2012; 36: 465-469
  • 51 Hatlen T, Song K, Shurtleff D et al. Contributory factors to postoperative spinal fusion complications for children with myelomeningocele. Spine (Phila Pa) 1976; 35: 1294-1299
  • 52 Young NL, Sheridan K, Burke TA et al. Health outcomes among youths and adults with spina bifida. J Pediatr 2013; 162: 993-998
  • 53 Crytzer TM, Dicianno BE, Kapoor R. Physical activity, exercise, and health-related measures of fitness in adults with spina bifida: a review of the literature. PM R 2013; 5: 1051-1062
  • 54 Vankoski SJ, Michaud S, Dias L. External tibial torsion and the effectiveness of the solid ankle-foot orthoses. J Pediatr Orthop 2000; 20: 349-355
  • 55 Schoenmakers MA, Gulmans VA, Gooskens RH et al. Spina bifida at the sacral level: more than minor gait disturbances. Clin Rehabil 2004; 18: 178-185
  • 56 Shah RR, Barrack RL. Total hip arthroplasty in a patient with myelomeningocele. J Arthroplasty 2012; 27: 13-16
  • 57 Sewell MD, Al-Hadithy N, Hanna SA et al. Custom rotating-hinge total knee replacement in patients with spina bifida and severe neuromuscular dysfunction. Arch Orthop Trauma Surg 2012; 132: 1321-1325