Pneumologie 2013; 67(08): 435-441
DOI: 10.1055/s-0033-1344241
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Ventilator induzierter Zwerchfellschaden: ein Update

Understanding Ventilator-Induced Diaphragmatic Dysfunction (VIDD): Progress and Advances
H.-J. Kabitz
1   Abteilung Pneumologie (Ärztlicher Direktor: Prof. Dr. Müller-Quernheim), Universitätsklinik Freiburg, Freiburg
,
W. Windisch
2   Abteilung Pneumologie (Chefarzt: Prof. Dr. Wolfram Windisch), Lungenklinik Merheim – Kliniken der Stadt Köln gGmbH, Köln
,
B. Schönhofer
3   Medizinische Klinik II – Klinik für Pneumologie, Intensiv- und Schlafmedizin (Chefarzt: Prof. Dr. Bernd Schönhofer), KRH Klinikum Oststadt-Heidehaus, Hannover
› Author Affiliations
Further Information

Publication History

Publication Date:
01 July 2013 (online)

Zusammenfassung

Der Ventilator induzierte Zwerchfellschaden (engl. ventilator-induced diaphragmatic dysfunction (VIDD)) scheint kein tierexperimentelles Artefakt zu sein, sondern manifestiert sich ebenfalls bei beatmeten Patienten. Die verfügbare Evidenz legt nahe, dass die VIDD auf dem Boden einer hochregulierten Proteolyse in den Atemmuskeln entsteht. Es mehren sich die Hinweise, dass VIDD nicht einfach Teil eines generellen muskulären Prozesses ist: So unterliegen z. B. weder der Musculus latissimus dorsi noch der Musculus pectoralis major diesen rapiden Abbauvorgängen. Erste humane Studienergebnisse zeigten, dass es bei kontrollierter invasiver Beatmung über einen Zeitraum von lediglich 18 – 69 Stunden zu einer deutlichen Abnahme des Faserquerschnitts der diaphragmalen Myofibrillen kommt. Kürzlich konnte gar gezeigt werden, dass extrem kurze Phasen von nur zwei Stunden kontrollierter invasiver Beatmung ausreichen, um einen beginnenden Schaden hervorzurufen. Erstmals konnte ferner in vivo an humanen Individuen gezeigt werden, dass die VIDD auch klinisch bereits nach einem Tag invasiver Beatmung zu einer erheblichen Einschränkung der Kraftgenerierung des Zwerchfells führt. Diese Einschränkung verlief über einen Beobachtungszeitraum von einer Woche progressiv und kam nicht etwa nach einem initialen Abfall der Zwerchfellkraft zum Stillstand. Für den Kliniker besonders wertvoll scheint die Möglichkeit, mittels einer einfachen sonografischen Methode die Zwerchfellbeweglichkeit abzuschätzen und somit einen möglichen Surrogatparameter der VIDD mit hohem prädiktivem Wert am Patientenbett verfügbar zu haben. Bezüglich der möglichen Therapieoptionen der VIDD muss an erster Stelle deren Prävention durch eine ausreichend hohe diaphragmale Leistung genannt werden – ein unverändert bestehend bleibender Widerspruch zu der Intention, durch die (invasive) Beatmung eine möglichst große Entlastung der Atempumpe zu erzielen.

Abstract

There is rising evidence that ventilator-induced diaphragmatic dysfunction (VIDD) is not just an artifactual finding from animal studies, but actually occurs in humans undergoing invasive mechanical ventilation. Initial research findings in humans have demonstrated that periods of controlled invasive mechanical ventilation lasting just 18 – 69 hours can lead to a marked reduction in diaphragmatic myofibers. More recently, it has been shown that even short periods (e. g. two-hours) of controlled invasive mechanical ventilation are sufficient to initiate VIDD. The evidence available at present suggests that VIDD is most likely based on increased proteolysis of the respiratory muscles. Moreover, VIDD seems not to be part of a general muscle wasting process, as suggested by the fact that e. g. the human latissimus dorsi and the pectoralis major muscles seem not to be subjected to early muscle fiber atrophy when directly compared to the human diaphragm. Novel in vivo data have also revealed that VIDD in humans is associated with a reduction in diaphragmatic force generation after only one day of controlled invasive mechanical ventilation. This impairment was observed to progress further over the one-week investigation period. The introduction of a simple bedside ultrasound measurement of diaphragmatic function is of great importance to the clinician, as it may serve as a surrogate measure for VIDD, with high predictive value. Regarding potential therapeutic interventions against VIDD, the primary aim should be to encourage sufficient diaphragmatic use in susceptible patients so as to avoid VIDD; this approach remains in fundamental contrast to that of reducing respiratory muscle load by (invasive) mechanical ventilation.

 
  • Literatur

  • 1 Esteban A, Anzueto A, Alía I et al. How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 2000; 161: 1450-1458
  • 2 Esteban A, Frutos F, Tobin MJ et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med 1995; 332: 345-350
  • 3 Schild K, Neusch C, Schönhofer B. Ventilator-induced diaphragmatic dysfunction (VIDD). Pneumologie 2008; 62: 33-39
  • 4 Levine S, Nguyen T, Taylor N et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358: 1327-1335
  • 5 Welvaart WN, Paul MA, Stienen GJM et al. Selective diaphragm muscle weakness after contractile inactivity during thoracic surgery. Ann Surg 2011; 254: 1044-1049
  • 6 Jaber S, Petrof BJ, Jung B et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 2011; 183: 364-371
  • 7 Du J, Wang X, Miereles C et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004; 113: 115-123
  • 8 Powers SK, Kavazis AN, DeRuisseau KC. Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 2005; 288: R337-344
  • 9 Hussain SNA, Mofarrahi M, Sigala I et al. Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 2010; 182: 1377-1386
  • 10 Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 1996; 335: 1897-1905
  • 11 Jaber S, Jung B, Matecki S et al. Clinical review: ventilator-induced diaphragmatic dysfunction – human studies confirm animal model findings!. Crit Care 2011; 15: 206
  • 12 Davis 3rd RT, Bruells CS, Stabley JN et al. Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake. Crit Care Med 2012; 40: 2858-2866
  • 13 Lukácsovits J, Carlucci A, Hill N et al. Physiological changes during low- and high-intensity noninvasive ventilation. Eur Respir J 2012; 39: 869-875
  • 14 Kabitz H-J, Walker D, Walterspacher S et al. Controlled twitch mouth pressure reliably predicts twitch esophageal pressure. Respir Physiol Neurobiol 2007; 156: 276-282
  • 15 Kabitz H-J, Windisch W. Diagnostik der Atemmuskelfunktion: State of the Art. Pneumologie 2007; 61: 582-587
  • 16 ATS/ERS. Statement on Respiratory Muscle Testing. Am J Respir Crit Care Med 2002; 166: 518-624
  • 17 Demoule A, Morelot-Panzini C, Prodanovic H et al. Identification of prolonged phrenic nerve conduction time in the ICU: magnetic versus electrical stimulation. Intensive Care Med 2011; 37: 1962-1968
  • 18 Kim WY, Suh HJ, Hong S-B et al. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med 2011; 39: 2627-2630
  • 19 Nason LK, Walker CM, McNeeley MF et al. Imaging of the diaphragm: anatomy and function. Radiographics 2012; 32: E51-70
  • 20 Grosu HB, Lee YI, Lee J et al. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest 2012; 142: 1455-1460
  • 21 Kabitz H-J, Walterspacher S, Walker D et al. Inspiratory muscle strength in chronic obstructive pulmonary disease depending on disease severity. Clin Sci 2007; 113: 243-249
  • 22 Walterspacher S, Schlager D, Walker DJ et al. Respiratory muscle function in interstitial lung disease. Eur Respir J 2012; DOI: 10.1183/09031936.00109512. [Epup ahead of print]
  • 23 Meyer FJ, Lossnitzer D, Kristen AV et al. Respiratory muscle dysfunction in idiopathic pulmonary arterial hypertension. Eur Respir J 2005; 25: 125-130
  • 24 Kabitz H-J, Schwoerer A, Bremer H-C et al. Impairment of respiratory muscle function in pulmonary hypertension. Clin Sci 2008; 114: 165-171
  • 25 Kabitz H-J, Sonntag F, Walker D et al. Diabetic polyneuropathy is associated with respiratory muscle impairment in type 2 diabetes. Diabetologia 2008; 51: 191-197
  • 26 Batt J, dos Santos CC, Cameron JI et al. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med 2013; 187: 238-246
  • 27 Dos Santos CC, Batt J. ICU-acquired weakness: mechanisms of disability. Curr Opin Crit Care 2012; 18: 509-517
  • 28 Santos PD, Teixeira C, Savi A et al. The critical illness polyneuropathy in septic patients with prolonged weaning from mechanical ventilation: is the diaphragm also affected? A pilot study. Respir Care 2012; 57: 1594-1601
  • 29 Hermans G, Agten A, Testelmans D et al. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care 2010; 14: R127
  • 30 Tobin MJ, Laghi F, Jubran A. Narrative review: ventilator-induced respiratory muscle weakness. Ann Intern Med 2010; 153: 240-245
  • 31 Demoule A, Jung B, Prodanovic H et al. Diaphragm Dysfunction on Admission to ICU: Prevalence, Risk Factors and Prognostic Impact – a Prospective Study. Am J Respir Crit Care Med 2013; [Epub ahead of print]
  • 32 Serpa Neto A, Cardoso SO, Manetta JA et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. J Am Med Assoc 2012; 308: 1651-1659
  • 33 Jung B, Sebbane M, Goff CL et al. Moderate and prolonged hypercapnic acidosis may protect against ventilator-induced diaphragmatic dysfunction in healthy piglet: an in vivo study. Crit Care 2013; 17: R15
  • 34 Futier E, Constantin J-M, Combaret L et al. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 2008; 12: R116
  • 35 Sassoon CSH, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004; 170: 626-632
  • 36 Hudson MB, Smuder AJ, Nelson WB et al. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med 2012; 40: 1254-1260
  • 37 Powers SK, DeCramer M, Gayan-Ramirez G et al. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 2008; 12: 191
  • 38 Daniel Martin A, Smith B, Gabrielli A. Mechanical ventilation, diaphragm weakness and weaning: A rehabilitation perspective. Respir Physiol Neurobiol 2013; [Epup ahead of print]
  • 39 Powers SK, Hudson MB, Nelson WB et al. Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 2011; 39: 1749-1759
  • 40 Agten A, Maes K, Smuder A et al. N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit Care Med 2011; 39: 777-782
  • 41 Laghi F. Ventilator-induced diaphragmatic dysfunction: is there a dim light at the end of the tunnel?. Crit Care Med 2011; 39: 903-905
  • 42 Doorduin J, Sinderby CA, Beck J et al. The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med 2012; 185: 90-95
  • 43 Gea J. A drug therapy for muscle dysfunction in respiratory disorders?. Am J Respir Crit Care Med 2012; 185: 10-11
  • 44 Van Hees HWH, Dekhuijzen PNR, Heunks LMA. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009; 179: 41-47
  • 45 Ayas NT, McCool FD, Gore R et al. Prevention of human diaphragm atrophy with short periods of electrical stimulation. Am J Respir Crit Care Med 1999; 159: 2018-2020
  • 46 Pavlovic D, Wendt M. Diaphragm pacing during prolonged mechanical ventilation of the lungs could prevent from respiratory muscle fatigue. Med Hypotheses 2003; 60: 398-403
  • 47 Adler D, Gottfried SB, Bautin N et al. Repetitive magnetic stimulation of the phrenic nerves for diaphragm conditioning: a normative study of feasibility and optimal settings. Appl Physiol Nutr Metab 2011; 36: 1001-1008
  • 48 Martin AD, Smith BK, Davenport PD et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 2011; 15: R84
  • 49 Moodie L, Reeve J, Elkins M. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review. J Physiother 2011; 57: 213-221
  • 50 Bissett B, Leditschke IA, Green M. Specific inspiratory muscle training is safe in selected patients who are ventilator-dependent: a case series. Intensive Crit Care Nurs 2012; 28: 98-104
  • 51 Hulzebos EHJ, Helders PJM, Favié NJ et al. Preoperative intensive inspiratory muscle training to prevent postoperative pulmonary complications in high-risk patients undergoing CABG surgery: a randomized clinical trial. J Am Med Assoc 2006; 296: 1851-1857
  • 52 Smuder AJ, Min K, Hudson MB et al. Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol 2012; 112: 501-510