Diabetologie und Stoffwechsel 2012; 7(3): 183-192
DOI: 10.1055/s-0032-1312915
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Multimodale Lipidtherapie bei Diabetes

Multimodal Lipid-therapy in Patients with Diabetes
M. Hanefeld
1   GWT-TUD GmbH, Dresden
,
M. Merkel
2   I. Medizinischen Klinik:, Allg. Innere Medizin, Gastroenterologie, Endokrinologie, Diabetologie & Stoffwechsel, Asklepios Klinik St. Georg, Asklepios Campus Hamburg, Medizinische Fakultät der Semmelweis Universität
,
S. Fischer
3   Stoffwechselambulanz, Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus an der TU Dresden
,
A. Stahn
3   Stoffwechselambulanz, Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus an der TU Dresden
,
D. Müller-Wieland
2   I. Medizinischen Klinik:, Allg. Innere Medizin, Gastroenterologie, Endokrinologie, Diabetologie & Stoffwechsel, Asklepios Klinik St. Georg, Asklepios Campus Hamburg, Medizinische Fakultät der Semmelweis Universität
› Author Affiliations
Further Information

Publication History

Publication Date:
22 June 2012 (online)

Zusammenfassung

Die Dyslipoproteinämie bei Diabetes repräsentiert eine komplexe Pathophysiologie atherogener Lipoproteinfraktionen, die eng mit der Dysglykämie und den Komorbiditäten, besonders der viszeralen Adipositas verknüpft sind. Die Diagnostik umfasst deshalb die Triglyzeride, Cholesterin, LDL-Cholesterin und HDL-Cholesterin, ggf. Apo B und Lp(a) als Grundlage einer differenzierten Betrachtung des Lipidrisikos und einer multimodalen Therapie. Da Typ-2-Diabetiker a priori eine Hochrisikogruppe für kardiovaskuläre Erkrankungen darstellen, empfehlen nationale und internationale Leitlinien eine strikte Kontrolle der Lipidtrias mit LDL-Cholesterin < 70 mg/dl, Triglyzeriden < 150 mg/dl und HDL-Cholesterol > 40 mg/dl bei Männern resp. > 50 mg/dl bei Frauen. Lebensstil-Intervention mit Gewichtsreduktion und physischer Konditionierung ist als Basistherapie eine primäre, effektive und sichere Option für die Senkung erhöhter Triglyzeride, verbunden mit moderatem Anstieg des HDL-Cholesterins. LDL-Cholesterin wird dadurch nur marginal gebessert. Statine sind aufgrund ihres umfassend dokumentierten präventiven Nutzens bei Typ-2-Diabetikern obligat. Es bleibt aber auch bei LDL-Cholesterinwerten im Zielbereich unter 100 mg/dl ein hohes „Lipidrestrisiko“. Hier setzt die multimodale Therapie als Add-on ein oder im Fall einer Statinunverträglichkeit als Monotherapie. Hierfür stehen 3 Substanzgruppen zur Verfügung: Fibrate, Nikotinsäure, Omega-3-Fettsäuren, für die allerdings nur wenige evidenzbasierte Daten aus kontrollierten Outcomestudien zur Verfügung stehen. Bei dieser komplexen Lage ist eine individualisierte Therapie erforderlich, die sich an der Pathophysiologie, dem Typ der Fettstoffwechselstörung und dem globalen Risiko des Patienten orientiert. Der vorliegende Review möchte eine Anleitung zur risikoadjustierten, rationellen, multimodalen Lipidtherapie vermitteln.

Abstract

Dyslipoproteinemia in patients with diabetes represents a complex pathophysiology of atherogenic lipoprotein fractions which are strongly influenced by quality of glycemic control and visceral obesity. Therefore the diagnostic comprise total cholesterol, LDL-cholesterol, triglycerides and HDL-cholesterol, eventually complmented by apoB and Lp(a) as basis of risk estimation and of multimodale integrated therapy. Since type 2 diabetes already itself is a major cardiovascular risk factor national and international guideline recommend strict control of all three parameters of the lipid triad: LDL-cholesterol < 70 mg/dl, triglycerides < 150 mg/dl and HDL-Cholesterol in males of > 40 mg/dl and females > 50 mg/dl. Lifestyle intervention with reduction of overweight and appropriate physical exercise is in any case an essential effective and safe part of treatment of hypertriglyceridemia/low HDL, with little effect on LDL-cholesterol. Guidelines recommend statins in patients with type 2 diabetes since they represent a high risk group for cardiovascular disease with class Ia evidence from randomized trials. However despite LDL-cholesterol levels < 100 mg/dl under statin treatment there remains a high lipid risk in the case of diabetic dyslipidemia. Therefore patients with low HDL/hypertriglyceridemia syndrome need an add-on therapy to completely correct the lipid triad. There are three classes of drugs with cardioprotective potentials: fibrates, nicotinic acid derivatives and omega 3 fatty acids. There exist only inconsistent data on cardiovascular outcome for add-on therapy to statins in patients with diabetes. Therefore an individualized decision based on pathophysiology and global risk estimation is essential. This review presents a guide to individualized risk adjusted treatment of multimodale lipidtherapy of patients with diabetes.

 
  • Literatur

  • 1 Koehler C, Ott P, Benke I et al. Comparison of the prevalence of the metabolic syndrome by WHO, AHA/NHLBI, and IDF definitions in a German population with type 2 diabetes: the Diabetes in Germany (DIG) Study. Horm Metab Res 2007; 39 (09) 632-635.
  • 2 Unwin N, Bhopal R, Hayes L et al. A comparison of the new international diabetes federation definition of metabolic syndrome to WHO and NCEP definitions in Chinese, European and South Asian origin adults. Ethn Dis 2007; 17 (03) 522-528
  • 3 Grundy SM, Brewer HB Jr, Cleeman JI et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004; 109 (03) 433-438
  • 4 Zimmet P, Magliano D, Matsuzawa Y et al. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb 2005; 12 (06) 295-300
  • 5 Meisinger C, Döring A, Heier M et al. Type 2 diabetes mellitus in Augsburg – an epidemiological overview. Gesundheitswesen 2005; 67 (Suppl. 01) 103-S109
  • 6 Assmann G, Schulte H. The Prospective Cardiovascular Münster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J 1988; 116 (06) 1713-1724
  • 7 Jaross W et al. Comparison of risk factors for coronary heart disease in Dresden and Münster. Results of the DRECAN (Dresden Cardiovascular Risk and Nutrition) study and the PROCAM (Prospective Cardiovascular Münster) Study. Eur J Epidemiol 1994; 10 (03) 307-315
  • 8 Tonelli M, Lloyd A, Clement F et al. Efficacy of statins for primary prevention in people at low cardiovascular risk: a meta-analysis. CMAJ 2011; 183 (16) E1189-E1202 . Epub 2011 Oct 11
  • 9 Reriani MK, Dunlay SM, Gupta B et al. Effects of statins on coronary and peripheral endothelial function in humans: a systematic review and meta-analysis of randomized controlled trials. Eur J Cardiovasc Prev Rehabil 2011; 18 (05) 704-716 . Epub 2011 Mar 4. Review
  • 10 Keech A, Simes RJ, Barter P et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005; 366 (9500) 1849-1861
  • 11 Goldenberg I, Benderly M, Sidi R et al. Relation of clinical benefit of raising high-density lipoprotein cholesterol to serum levels of low-density lipoprotein cholesterol in patients with coronary heart disease (from the Bezafibrate Infarction Prevention Trial). Am J Cardiol 2009; 103 (01) 41-45
  • 12 Reiner Z, Catapano AL, De Backer G et al. ; European Association for Cardiovascular Prevention & Rehabilitation, ESC Committee for Practice Guidelines (CPG) 2008–2010 and 2010–2012 Committees ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 2011; 32 (14) 1769-1818 . Epub 2011 Jun 28
  • 13 [No authors listed]. Introduction: The American Diabetes Association's (ADA) evidence-based practice guidelines, standards, and related recommendations and documents for diabetes care. Diabetes Care 2012; 35 (Suppl. 01) S1-S2
  • 14 Schulze J, Scholz GH, Verlohren HJ et al. Fachkommission Diabetes SLÄK (Hrsg): Praxis-Leitlinie zur Diagnostik und Therapie von Fettstoffwechselstörungen, Eigenverlag: Institut für Medizinische Informatik und Biometrie der TU Dresden. 5. überarbeitete Aufl. 2012
  • 15 Brunzell JD, Deeb S. Familial lipoprotein lipase deficiency, apo CII deficiency, and hepatic lipase deficiency. In: Scriver CR, et al. (eds) The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill; 2001: 2789-2816
  • 16 Kluger M, Heeren J, Merkel M. Apoprotein A-V: An important regulator of triglyceride metabolism. J Inherit Metab Dis 2008; 31 (02) 281-288
  • 17 Wang J, Hegele RA. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis 2007; 6: 23
  • 18 Peterfy M et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat Genet 2007; 39 (12) 1483-1487
  • 19 Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res 2011; 52 (02) 189-206
  • 20 Teslovich TM et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010; 466 (7307) 707-713
  • 21 Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005; 36 (03) 232-240
  • 22 Wang J et al. Polygenic determinants of severe hypertriglyceridemia. Hum Mol Genet 2008; 17 (18) 2894-2899
  • 23 Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293 (02) E444-E452
  • 24 Cypess AM et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360 (15) 1509-1517
  • 25 Bartelt A et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011; 17 (02) 200-205
  • 26 Nordestgaard BG, Freiberg JJ. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol. Curr Vasc Pharmacol 2011; 9 (03) 281-286
  • 27 Austin MA et al. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990; 82 (02) 495-506
  • 28 Lahdenpera S et al. Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 1996; 39 (04) 453-461
  • 29 Colhoun HM, Betteridge DJ, Durrington PN et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004; 364: 685-696
  • 30 Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy of cholesterol-lowering therapy in 18686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008; 371: 117
  • 31 Davidson MH, Stein EA, Bays HE et al. For the COMBination of prescription Omega-3 with Simvastatin (COMBOS) investigators. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week randomized, double-blind, placebo-controlled study. Clin Therapeutics 2007; 29 (07) 1354-1367
  • 32 GISSI-Prevenzione Investigators. Dietary Supplementation with n-3-polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione Trial. Lancet 1999; 354: 447-455
  • 33 Kwak SM, Myung SK, Lee YJ et al. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Arch Intern Med 2012; Epub ahead of print
  • 34 The ACCORD Study Group. ACCORD lipid trial. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362: 1563-1574
  • 35 FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. The Lancet 2005; 366 (9500) 1849-1861
  • 36 Rubins HB, Robins SJ, Collins D et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341 (06) 410-418
  • 37 Miller M. Differentiating the effects of raising low levels of high-density lipoprotein cholesterol versus lowering normal triglycerides: further insights from the Veterans Affairs High-Density Lipoprotein Intervention Trial. Am J Cardiol 2000; 86 (12) 23L-27L
  • 38 Brown BG, Zhao XQ, Chait A et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001; 345: 1583-1592
  • 39 Villines TC, Stanek EJ, Devine PJ et al. The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J Am Coll Cardiol 2010; 55 (24) 2721-2726
  • 40 Duggal JK, Singh M, Attri N et al. Effect of niacin therapy on cardiovascular outcomes in patients with coronary artery disease. J Cardiovasc Pharmacol Ther 2010; 15 (02) 158-166
  • 41 Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis 2010; DOI: 101016/j.atherosclerosis 2009.12.023 .
  • 42 ADA. Clinical recommendation. Diabetes Care 2012; 35 (Suppl. 01) S1-S110
  • 43 Toeller M. Ernährungsempfehlungen bei Diabetes und deren Implementierung. Diabetologe 2009; 5: 442-452
  • 44 Getz GS, Reardon CA. Nutrition and cardiovascular disease. Arterionscler Thromb Vasc Biol 2007; 27 (12) 2499-2506 . Epub Oct 22
  • 45 Andrews RC, Cooper AR, Montgomery AA et al. Diet or diet plus physical acitivity vs. usual care in patients with newly diagnosed type-2-diabetes: the Early ACTID randomised controlled trial. Lancet 2011; : published online June 25
  • 46 Snowling NJ, Hopkins BG. Effects of different notes of exercise training on glucose control and risk factors for complication in type-2-diabetic patients: a meta-analysis. Diabetes care 2006; 29: 2518-2527
  • 47 Church TS, Blair SN, Cocreham S et al. effects of aerobic and resistents training on haemoglobin A1c-level in patients with type-2-diabetes: a randomized controlled trial. JAMA 2010; 304: 2253-2262
  • 48 Knowler WC, Fowler SE, Hamman FR et al. for the diabetes prevention program research group 10-Year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes. Study. Lancet 2009; 374: 1677-1686
  • 49 Lindström J, Ilanne-Parikka P, Peltonen M et al. For the finished diabetes prevention study group. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 2006; 368: 1673-1679
  • 50 The look AHEAD research group. Long-term effects of a lifestyle intervention on weight in cardiovascular risk factors in individuals with type-2-diabetes mellitus 4-Year results of the look AHEAD trial. Arch intern Med 2010; 170: 1566-1575
  • 51 Lazo M, Solga SF, Horska A et al. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type-2-diabetes. Diabetes Care 2010; 33: 2156-2163
  • 52 Petersen KF, Dufour S, Befroy D et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 2005; 54: 603-608
  • 53 Stefan N, Kantarzis K, Häring HU. Causes and metabolic consequences of Fatty liver. Endocr Rev 2008; 29: 939-960
  • 54 Kotronen A, Yki-Järvinen H. Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008; 28: 27-38
  • 55 Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. N Engl J Med 2010; 363: 1341-1350
  • 56 Müller-Wieland D, Knebel B, Haas J et al. Adipositas: ektope Fettverteilung und Herz. Herz 2010; 35: 198-205
  • 57 Klein S, Fontana L et al. Absence of an Effect of Liposuction on Insulin Action and Risk Factors for Coronary Heart Disease. N Engl J Med 2004; 350: 2549-2557
  • 58 Appel LJ, Clark JM, Yeh HC et al. Comparative Effectiveness of Weight-Loss Interventions in Clinical Practice. N Engl J Med 2011; 365: 1959-1968
  • 59 Nissen SE. Halting the progression of atherosclerosis with intensive lipid lowering: results from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am J Med 2005; 118 (Suppl. 12) 22-27
  • 60 Baigent C, Landray MJ, Reith C et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal protection): a randomized placebo-controlled trial. Lancet 2011; 377: 2181-2192
  • 61 Gerstein H, Yusuf S, Riddle MC et al. Origin Trial Investigators Rationale, design, and baseline characteristics for a large international trial of cardiovascular disease prevention in people with dysglycemia: the ORIGIN Trial (Outcome Reduction with an Initial Glargine Intervention). Am Heart J 2008; 155 (01) 26-32, 32.e1-32.e6 . Epub 2007 Nov 26.
  • 62 Chapman MJ, Ginsberg HN, Amarenco P et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011; 32 (11) 1345-1361 . Epub 2011 Apr 29. Review
  • 63 Berge KG, Canner PL. Coronary drug project: experience with niacin. Coronary Drug Project Research Group. Eur J Clin Pharmacol 1991; 40 (Suppl. 01) 49-S51
  • 64 Kamanna VS, Kashyap ML. Mechanism of action of niacin on lipoprotein metabolism. Curr Atheroscler Rep 2000; 2 (01) 36-46 . Review
  • 65 Mikhail N. The use of niacin in diabetes mellitus. Arch Intern Med 2003; 163 (03) 369-370 ; author reply 370
  • 66 Praxis-Leitlinie zur Diagnostik und Therapie von Fettstoffwechselstörungen. Fachkommission Diabetes der Sächsischen Landesärztekammer und der KV-Sachsen in Zusammenarbeit mit einem unabhängigen wissenschaftlichen Beirat deutscher Experten verschiedener Fachdisziplinen 2012.
  • 67 Adaptiert nach Gouni-Berthold I, Merkel M, Müller-Wieland D. et al. Diabetische Dyslipidämie in Diabetologie in Klinik und Praxis. Häring HU, Gallwitz B, Müller-Wieland D, et al. (Hrsg) 6. Aufl. Stuttgart: Thieme; 2010