Semin Reprod Med 2011; 29(3): 211-224
DOI: 10.1055/s-0031-1275522
© Thieme Medical Publishers

In Utero Origins of Adult Insulin Resistance and Vascular Dysfunction

Jennifer A. Thompson1 , Timothy R.H. Regnault1
  • 1Departments of Obstetrics and Gynaecology and Physiology and Pharmacology, Children's Health Research Institute and Lawson Research Institute, University of Western Ontario, London, Ontario, Canada
Further Information

Publication History

Publication Date:
27 June 2011 (online)

ABSTRACT

The metabolic syndrome (or syndrome X) is a constellation of risk factors including insulin resistance, hypertension, dyslipidemia, and central obesity that predispose to the development of cardiovascular disease and type 2 diabetes in adult life. Insulin resistance is believed to be a critical pathophysiological event early in the disease process, impacting both skeletal muscle metabolic function and vascular responses. Adverse changes in insulin sensitivity have been found to originate in utero; for instance, prenatal events such as placental insufficiency/oxidative stress leading to altered fetal growth trajectories are associated with increased rates of metabolic syndrome in adult life. Such intrauterine insults result in reduced skeletal muscle mass in conjunction with altered insulin signaling, decreased oxidative fibers, and impaired mitochondrial function. These developmental disturbances set the stage for development of muscle triglyceride accumulation and depressed insulin sensitivity in childhood. Abnormalities of vascular structure and function arising from deprived intrauterine conditions that are exacerbated by insulin resistance account for the progression of hypertension from childhood to adulthood. Arterial changes initiated in utero include reduced endothelial nitric oxide (NO) bioavailability, vascular smooth muscle cell proliferation and inflammation, events leading to endothelial dysfunction, and atherosclerosis that are present in those destined for metabolic syndrome. In addition, the hypertensive phenotype that is a hallmark of metabolic syndrome may also be traced to blunted kidney development and renin-angiotensin system activation in growth-restricted offspring. The summative impact of these intrauterine programmed changes in terms of influencing adult health and disease encompasses dietary and lifestyle factors introduced postnatally. Establishing novel therapeutic interventions aimed at preventing and/or reducing in utero–induced insulin resistance and vascular dysfunction warrants investigation because the numbers of low birthweight babies continue to increase.

REFERENCES

  • 1 Osmond C, Barker D J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women.  Environ Health Perspect. 2000;  108 (Suppl 3) 545-553
  • 2 Ross M G, Beall M H. Adult sequelae of intrauterine growth restriction.  Semin Perinatol. 2008;  32 (3) 213-218
  • 3 Eriksson J G, Forsén T, Tuomilehto J, Winter P D, Osmond C, Barker D J. Catch-up growth in childhood and death from coronary heart disease: longitudinal study.  BMJ. 1999;  318 (7181) 427-431
  • 4 Arends N J, Boonstra V H, Duivenvoorden H J, Hofman P L, Cutfield W S, Hokken-Koelega A C. Reduced insulin sensitivity and the presence of cardiovascular risk factors in short prepubertal children born small for gestational age (SGA).  Clin Endocrinol (Oxf). 2005;  62 (1) 44-50
  • 5 Barker D J, Osmond C, Forsén T J, Kajantie E, Eriksson J G. Trajectories of growth among children who have coronary events as adults.  N Engl J Med. 2005;  353 (17) 1802-1809
  • 6 Morton J S, Rueda-Clausen C F, Davidge S T. Mechanisms of endothelium-dependent vasodilation in male and female, young and aged offspring born growth restricted.  Am J Physiol Regul Integr Comp Physiol. 2010;  298 (4) R930-R938
  • 7 Barker D J. The developmental origins of insulin resistance.  Horm Res. 2005;  64 (Suppl 3) 2-7
  • 8 Stary H C. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults.  Arteriosclerosis. 1989;  9 (1, Suppl) I19-I32
  • 9 Singhal A. Endothelial dysfunction: role in obesity-related disorders and the early origins of CVD.  Proc Nutr Soc. 2005;  64 (1) 15-22
  • 10 Ness R B, Sibai B M. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia.  Am J Obstet Gynecol. 2006;  195 (1) 40-49
  • 11 Regnault T R, de Vrijer B, Galan H L, Wilkening R B, Battaglia F C, Meschia G. Development and mechanisms of fetal hypoxia in severe fetal growth restriction.  Placenta. 2007;  28 (7) 714-723
  • 12 Mayhew T M, Manwani R, Ohadike C, Wijesekara J, Baker P N. The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances.  Placenta. 2006;  28 (3) 233-238
  • 13 Resnik R. Intrauterine growth restriction.  Obstet Gynecol. 2002;  99 (3) 490-496
  • 14 Marconi A M, Paolini C L, Stramare L et al.. Steady state maternal-fetal leucine enrichments in normal and intrauterine growth-restricted pregnancies.  Pediatr Res. 1999;  46 (1) 114-119
  • 15 Paolini C L, Marconi A M, Ronzoni S et al.. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies.  J Clin Endocrinol Metab. 2001;  86 (11) 5427-5432
  • 16 Thureen P J, Trembler K A, Meschia G, Makowski E L, Wilkening R B. Placental glucose transport in heat-induced fetal growth retardation.  Am J Physiol. 1992;  263 (3 Pt 2) R578-R585
  • 17 Alvino G, Cozzi V, Radaelli T, Ortega H, Herrera E, Cetin I. Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia.  Pediatr Res. 2008;  64 (6) 615-620
  • 18 Rodie V A, Caslake M J, Stewart F et al.. Fetal cord plasma lipoprotein status in uncomplicated human pregnancies and in pregnancies complicated by pre-eclampsia and intrauterine growth restriction.  Atherosclerosis. 2004;  176 (1) 181-187
  • 19 Lackman F, Capewell V, Gagnon R, Richardson B. Fetal umbilical cord oxygen values and birth to placental weight ratio in relation to size at birth.  Am J Obstet Gynecol. 2001;  185 (3) 674-682
  • 20 Cheema R, Dubiel M, Gudmundsson S. Signs of fetal brain sparing are not related to umbilical cord blood gases at birth.  Early Hum Dev. 2009;  85 (7) 467-470
  • 21 Arbeille P. Fetal arterial Doppler-IUGR and hypoxia.  Eur J Obstet Gynecol Reprod Biol. 1997;  75 (1) 51-53
  • 22 Baschat A A. Fetal responses to placental insufficiency: an update.  BJOG. 2004;  111 (10) 1031-1041
  • 23 Rurak D W, Richardson B S, Patrick J E, Carmichael L, Homan J. Blood flow and oxygen delivery to fetal organs and tissues during sustained hypoxemia.  Am J Physiol. 1990;  258 (5 Pt 2) R1116-R1122
  • 24 Verkauskiene R, Beltrand J, Claris O et al.. Impact of fetal growth restriction on body composition and hormonal status at birth in infants of small and appropriate weight for gestational age.  Eur J Endocrinol. 2007;  157 (5) 605-612
  • 25 Widdowson E M, Crabb D E, Milner R D. Cellular development of some human organs before birth.  Arch Dis Child. 1972;  47 (254) 652-655
  • 26 Mi J, Cheng H, Zhao X Y, Hou D Q, Chen F F, Zhang K L. Developmental origin of metabolic syndrome: interaction of thinness at birth and overweight during adult life in Chinese population.  Obes Rev. 2008;  9 (Suppl 1) 91-94
  • 27 Marconi A M, Ronzoni S, Vailati S, Bozzetti P, Morabito A, Battaglia F C. Neonatal morbidity and mortality in intrauterine growth restricted (IUGR) pregnancies is predicated upon prenatal diagnosis of clinical severity.  Reprod Sci. 2009;  16 (4) 373-379
  • 28 Ozanne S E, Constância M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype.  Nat Clin Pract Endocrinol Metab. 2007;  3 (7) 539-546
  • 29 Gluckman P D, Hanson M A, Cooper C, Thornburg K L. Effect of in utero and early-life conditions on adult health and disease.  N Engl J Med. 2008;  359 (1) 61-73
  • 30 Rogers M S, Murray H G, Wang C C et al.. Oxidative stress in the fetal lamb brain following intermittent umbilical cord occlusion: a path analysis.  BJOG. 2001;  108 (12) 1283-1290
  • 31 Baker J E. Oxidative stress and adaptation of the infant heart to hypoxia and ischemia.  Antioxid Redox Signal. 2004;  6 (2) 423-429
  • 32 Grattagliano I, Palmieri V O, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis.  J Nutr Biochem. 2008;  19 (8) 491-504
  • 33 Tintu A N, Noble F A, Rouwet E V. Hypoxia disturbs fetal hemodynamics and growth.  Endothelium. 2007;  14 (6) 353-360
  • 34 Fernandez-Twinn D S, Ozanne S E. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome.  Physiol Behav. 2006;  88 (3) 234-243
  • 35 Luo Z C, Fraser W D, Julien P et al.. Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress?.  Med Hypotheses. 2006;  66 (1) 38-44
  • 36 Jensen C B, Martin-Gronert M S, Storgaard H, Madsbad S, Vaag A, Ozanne S E. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight.  PLoS ONE. 2008;  3 (11) e3738
  • 37 Singhal A, Fewtrell M, Cole T J, Lucas A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm.  Lancet. 2003;  361 (9363) 1089-1097
  • 38 Phillips D I. Insulin resistance as a programmed response to fetal undernutrition.  Diabetologia. 1996;  39 (9) 1119-1122
  • 39 Jaquet D, Deghmoun S, Chevenne D, Collin D, Czernichow P, Lévy-Marchal C. Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth.  Diabetologia. 2005;  48 (5) 849-855
  • 40 Eriksson J G, Forsén T, Tuomilehto J, Jaddoe V W, Osmond C, Barker D J. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals.  Diabetologia. 2002;  45 (3) 342-348
  • 41 Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation.  J Clin Endocrinol Metab. 2000;  85 (4) 1401-1406
  • 42 Hofman P L, Cutfield W S, Robinson E M et al.. Insulin resistance in short children with intrauterine growth retardation.  J Clin Endocrinol Metab. 1997;  82 (2) 402-406
  • 43 Karlberg J P, Albertsson-Wikland K, Kwan E Y, Lam B C, Low L C. The timing of early postnatal catch-up growth in normal, full-term infants born short for gestational age.  Horm Res. 1997;  48 (Suppl 1) 17-24
  • 44 Louey S, Cock M L, Harding R. Long term consequences of low birthweight on postnatal growth, adiposity and brain weight at maturity in sheep.  J Reprod Dev. 2005;  51 (1) 59-68
  • 45 Cosmi E, Visentin S, Fanelli T, Mautone A J, Zanardo V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction.  Obstet Gynecol. 2009;  114 (5) 1109-1114
  • 46 Contreras C, Sánchez A, Martínez P et al.. Insulin resistance in penile arteries from a rat model of metabolic syndrome.  Br J Pharmacol. 2010;  161 (2) 350-364
  • 47 Cunningham J T, Rodgers J T, Arlow D H, Vazquez F, Mootha V K, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex.  Nature. 2007;  450 (7170) 736-740
  • 48 Dressel U, Allen T L, Pippal J B, Rohde P R, Lau P, Muscat G E. The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells.  Mol Endocrinol. 2003;  17 (12) 2477-2493
  • 49 Schuler M, Ali F, Chambon C et al.. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes.  Cell Metab. 2006;  4 (5) 407-414
  • 50 Krämer D K, Ahlsén M, Norrbom J et al.. Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC-1 alpha mRNA.  Acta Physiol (Oxf). 2006;  188 (3–4) 207-216
  • 51 Loviscach M, Rehman N, Carter L et al.. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action.  Diabetologia. 2000;  43 (3) 304-311
  • 52 Handel S E, Stickland N C. The effects of low birthweight on the ultrastructural development of two myofibre types in the pig.  J Anat. 1987;  150 129-143
  • 53 Picard B, Lefaucheur L, Berri C, Duclos M J. Muscle fibre ontogenesis in farm animal species.  Reprod Nutr Dev. 2002;  42 (5) 415-431
  • 54 He J, Watkins S, Kelley D E. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity.  Diabetes. 2001;  50 (4) 817-823
  • 55 Fahey A J, Brameld J M, Parr T, Buttery P J. Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus.  J Anim Sci. 2005;  83 (10) 2330-2338
  • 56 McCoard S A, McNabb W C, Peterson S W, McCutcheon S N, Harris P M. Muscle growth, cell number, type and morphometry in single and twin fetal lambs during mid to late gestation.  Reprod Fertil Dev. 2000;  12 (5–6) 319-327
  • 57 Tilley R E, McNeil C J, Ashworth C J, Page K R, Mcardle H J. Altered muscle development and expression of the insulin-like growth factor system in growth retarded fetal pigs.  Domest Anim Endocrinol. 2007;  32 (3) 167-177
  • 58 Rees W D, Hay S M, Cruickshank M et al.. Maternal protein intake in the pregnant rat programs the insulin axis and body composition in the offspring.  Metabolism. 2006;  55 (5) 642-649
  • 59 Nyholm B, Qu Z, Kaal A et al.. Evidence of an increased number of type IIb muscle fibers in insulin-resistant first-degree relatives of patients with NIDDM.  Diabetes. 1997;  46 (11) 1822-1828
  • 60 Lagouge M, Argmann C, Gerhart-Hines Z et al.. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.  Cell. 2006;  127 (6) 1109-1122
  • 61 Malenfant P, Joanisse D R, Thériault R, Goodpaster B H, Kelley D E, Simoneau J A. Fat content in individual muscle fibers of lean and obese subjects.  Int J Obes Relat Metab Disord. 2001;  25 (9) 1316-1321
  • 62 Zhu M J, Ford S P, Means W J, Hess B W, Nathanielsz P W, Du M. Maternal nutrient restriction affects properties of skeletal muscle in offspring.  J Physiol. 2006;  575 (Pt 1) 241-250
  • 63 DeFronzo R A. Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview.  Diabetologia. 1992;  35 (4) 389-397
  • 64 Taniguchi C M, Emanuelli B, Kahn C R. Critical nodes in signalling pathways: insights into insulin action.  Nat Rev Mol Cell Biol. 2006;  7 (2) 85-96
  • 65 Fingar D C, Richardson C J, Tee A R, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E.  Mol Cell Biol. 2004;  24 (1) 200-216
  • 66 Thorn S R, Regnault T R, Brown L D et al.. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle.  Endocrinology. 2009;  150 (7) 3021-3030
  • 67 Muhlhausler B S, Duffield J A, Ozanne S E et al.. The transition from fetal growth restriction to accelerated postnatal growth: a potential role for insulin signalling in skeletal muscle.  J Physiol. 2009;  587 (Pt 17) 4199-4211
  • 68 Fahey A J, Brameld J M, Parr T, Buttery P J. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb.  J Anim Sci. 2005;  83 (11) 2564-2571
  • 69 Zhu M J, Ford S P, Nathanielsz P W, Du M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle.  Biol Reprod. 2004;  71 (6) 1968-1973
  • 70 Basu A, Lenka N, Mullick J, Avadhani N G. Regulation of murine cytochrome oxidase Vb gene expression in different tissues and during myogenesis. Role of a YY-1 factor-binding negative enhancer.  J Biol Chem. 1997;  272 (9) 5899-5908
  • 71 Schieke S M, Phillips D, McCoy Jr J P et al.. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity.  J Biol Chem. 2006;  281 (37) 27643-27652
  • 72 Selak M A, Storey B T, Peterside I, Simmons R A. Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats.  Am J Physiol Endocrinol Metab. 2003;  285 (1) E130-E137
  • 73 Thamer C, Stumvoll M, Niess A et al.. Reduced skeletal muscle oxygen uptake and reduced beta-cell function: two early abnormalities in normal glucose-tolerant offspring of patients with type 2 diabetes.  Diabetes Care. 2003;  26 (7) 2126-2132
  • 74 Dressel U, Allen T L, Pippal J B, Rohde P R, Lau P, Muscat G E. The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells.  Mol Endocrinol. 2003;  17 (12) 2477-2493
  • 75 Lin J, Wu H, Tarr P T et al.. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.  Nature. 2002;  418 (6899) 797-801
  • 76 Benton C R, Nickerson J G, Lally J et al.. Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria.  J Biol Chem. 2008;  283 (7) 4228-4240
  • 77 Mensink M, Hesselink M K, Russell A P, Schaart G, Sels J P, Schrauwen P. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus.  Int J Obes (Lond). 2007;  31 (8) 1302-1310
  • 78 Patti M E, Butte A J, Crunkhorn S et al.. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.  Proc Natl Acad Sci U S A. 2003;  100 (14) 8466-8471
  • 79 Lane R H, MacLennan N K, Hsu J L, Janke S M, Pham T D. Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance.  Endocrinology. 2002;  143 (7) 2486-2490
  • 80 Jucker B M, Yang D, Casey W M et al.. Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study.  Am J Physiol Endocrinol Metab. 2007;  293 (5) E1256-E1264
  • 81 Koopman R, Schaart G, Hesselink M K. Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids.  Histochem Cell Biol. 2001;  116 (1) 63-68
  • 82 Brunmair B, Staniek K, Dörig J et al.. Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids.  Diabetologia. 2006;  49 (11) 2713-2722
  • 83 Young M E, Patil S, Ying J et al.. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart.  FASEB J. 2001;  15 (3) 833-845
  • 84 Vettor R, Lombardi A M, Fabris R et al.. Lactate infusion in anesthetized rats produces insulin resistance in heart and skeletal muscles.  Metabolism. 1997;  46 (6) 684-690
  • 85 Sugden M C, Caton P W, Holness M J. PPAR control: it's SIRTainly as easy as PGC.  J Endocrinol. 2010;  204 (2) 93-104
  • 86 de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A. Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms.  FASEB J. 2007;  21 (13) 3431-3441
  • 87 Gerhart-Hines Z, Rodgers J T, Bare O et al.. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.  EMBO J. 2007;  26 (7) 1913-1923
  • 88 Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.  Nature. 2005;  434 (7029) 113-118
  • 89 Baur J A, Pearson K J, Price N L et al.. Resveratrol improves health and survival of mice on a high-calorie diet.  Nature. 2006;  444 (7117) 337-342
  • 90 Wu X, Chang M S, Mitsialis S A, Kourembanas S. Hypoxia regulates bone morphogenetic protein signaling through C-terminal-binding protein 1.  Circ Res. 2006;  99 (3) 240-247
  • 91 Zhang Q, Wang S Y, Nottke A C, Rocheleau J V, Piston D W, Goodman R H. Redox sensor CtBP mediates hypoxia-induced tumor cell migration.  Proc Natl Acad Sci U S A. 2006;  103 (24) 9029-9033
  • 92 Zhang Q, Wang S Y, Fleuriel C et al.. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex.  Proc Natl Acad Sci U S A. 2007;  104 (3) 829-833
  • 93 Ido Y. Pyridine nucleotide redox abnormalities in diabetes.  Antioxid Redox Signal. 2007;  9 (7) 931-942
  • 94 Regnault T R, Zhao L, Chiu J S, Gottheil S K, Foran A, Yee S. Peroxisome Proliferator-activated receptor -β/δ, -γ agonists and resveratrol modulate hypoxia induced changes in nuclear receptor activators of muscle oxidative metabolism.  PPAR Res. 2010;  2010 129173
  • 95 Lane R H, Chandorkar A K, Flozak A S, Simmons R A. Intrauterine growth retardation alters mitochondrial gene expression and function in fetal and juvenile rat skeletal muscle.  Pediatr Res. 1998;  43 (5) 563-570
  • 96 Brøns C, Jensen C B, Storgaard H et al.. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight.  J Clin Endocrinol Metab. 2008;  93 (10) 3885-3892
  • 97 Szendroedi J, Schmid A I, Chmelik M et al.. Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes.  PLoS Med. 2007;  4 (5) e154
  • 98 Kliewer S A, Xu H E, Lambert M H, Willson T M. Peroxisome proliferator-activated receptors: from genes to physiology.  Recent Prog Horm Res. 2001;  56 239-263
  • 99 Macdonald N, Holden P R, Roberts R A. Addition of peroxisome proliferator-activated receptor alpha to guinea pig hepatocytes confers increased responsiveness to peroxisome proliferators.  Cancer Res. 1999;  59 (19) 4776-4780
  • 100 Bonen A, Holloway G P, Tandon N N et al.. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats.  Am J Physiol Regul Integr Comp Physiol. 2009;  297 (4) R1202-R1212
  • 101 Holloway G P, Benton C R, Mullen K L et al.. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.  Am J Physiol Endocrinol Metab. 2009;  296 (4) E738-E747
  • 102 Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi P A. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle.  Biochim Biophys Acta. 2003;  1633 (1) 43-50
  • 103 Chevillotte E, Rieusset J, Roques M, Desage M, Vidal H. The regulation of uncoupling protein-2 gene expression by omega-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor beta.  J Biol Chem. 2001;  276 (14) 10853-10860
  • 104 Bezaire V, Spriet L L, Campbell S et al.. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation.  FASEB J. 2005;  19 (8) 977-979
  • 105 Brand M D, Pamplona R, Portero-Otín M et al.. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3.  Biochem J. 2002;  368 (Pt 2) 597-603
  • 106 Brandt J M, Djouadi F, Kelly D P. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha.  J Biol Chem. 1998;  273 (37) 23786-23792
  • 107 Hulver M W, Dohm G L. The molecular mechanism linking muscle fat accumulation to insulin resistance.  Proc Nutr Soc. 2004;  63 (2) 375-380
  • 108 Luquet S, Lopez-Soriano J, Holst D et al.. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability.  FASEB J. 2003;  17 (15) 2299-2301
  • 109 Barak Y, Liao D, He W et al.. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer.  Proc Natl Acad Sci U S A. 2002;  99 (1) 303-308
  • 110 Wang Y X, Lee C H, Tiep S et al.. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity.  Cell. 2003;  113 (2) 159-170
  • 111 Wang Y X, Zhang C L, Yu R T et al.. Regulation of muscle fiber type and running endurance by PPARdelta.  PLoS Biol. 2004;  2 (10) e294
  • 112 Magee T R, Han G, Cherian B, Khorram O, Ross M G, Desai M. Down-regulation of transcription factor peroxisome proliferator-activated receptor in programmed hepatic lipid dysregulation and inflammation in intrauterine growth-restricted offspring.  Am J Obstet Gynecol. 2008;  199 (3) 271-275, e1–e5
  • 113 Burdge G C, Slater-Jefferies J, Torrens C, Phillips E S, Hanson M A, Lillycrop K A. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations.  Br J Nutr. 2007;  97 (3) 435-439
  • 114 Kind K L, Simonetta G, Clifton P M, Robinson J S, Owens J A. Effect of maternal feed restriction on blood pressure in the adult guinea pig.  Exp Physiol. 2002;  87 (4) 469-477
  • 115 Kind K L, Clifton P M, Grant P A et al.. Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult guinea pig.  Am J Physiol Regul Integr Comp Physiol. 2003;  284 (1) R140-R152
  • 116 Lillycrop K A, Phillips E S, Jackson A A, Hanson M A, Burdge G C. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring.  J Nutr. 2005;  135 (6) 1382-1386
  • 117 Boney C M, Verma A, Tucker R, Vohr B R. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus.  Pediatrics. 2005;  115 (3) e290-e296
  • 118 Gluckman P D, Hanson M A. Metabolic disease: evolutionary, developmental and transgenerational influences. In: Hornstra G, Uauy R, Yang X, eds. The Impact of Maternal Nutrition on the Offspring. Basel, Switzerland: Vevey/S. Karger; 2005: 17-27
  • 119 Simmons R. Developmental origins of adult metabolic disease: concepts and controversies.  Trends Endocrinol Metab. 2005;  16 (8) 390-394
  • 120 Barker D J, Hales C N, Fall C H, Osmond C, Phipps K, Clark P M. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth.  Diabetologia. 1993;  36 (1) 62-67
  • 121 Barker D J. Fetal programming of coronary heart disease.  Trends Endocrinol Metab. 2002;  13 (9) 364-368
  • 122 Bertram C E, Hanson M A. Animal models and programming of the metabolic syndrome.  Br Med Bull. 2001;  60 103-121
  • 123 De Blasio M J, Gatford K L, McMillen I C, Robinson J S, Owens J A. Placental restriction of fetal growth increases insulin action, growth, and adiposity in the young lamb.  Endocrinology. 2007;  148 (3) 1350-1358
  • 124 Jaquet D, Vidal H, Hankard R, Czernichow P, Levy-Marchal C. Impaired regulation of glucose transporter 4 gene expression in insulin resistance associated with in utero undernutrition.  J Clin Endocrinol Metab. 2001;  86 (7) 3266-3271
  • 125 Ozanne S E, Olsen G S, Hansen L L et al.. Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle.  J Endocrinol. 2003;  177 (2) 235-241
  • 126 Sparks L M, Xie H, Koza R A et al.. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle.  Diabetes. 2005;  54 (7) 1926-1933
  • 127 Coll T, Jové M, Rodríguez-Calvo R et al.. Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB activation.  Diabetes. 2006;  55 (10) 2779-2787
  • 128 Hoeks J, Hesselink M K, Russell A P et al.. Peroxisome proliferator-activated receptor-gamma coactivator-1 and insulin resistance: acute effect of fatty acids.  Diabetologia. 2006;  49 (10) 2419-2426
  • 129 Staiger H, Staiger K, Haas C, Weisser M, Machicao F, Häring H U. Fatty acid-induced differential regulation of the genes encoding peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta in human skeletal muscle cells that have been differentiated in vitro.  Diabetologia. 2005;  48 (10) 2115-2118
  • 130 Bayol S A, Simbi B H, Stickland N C. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning.  J Physiol. 2005;  567 (Pt 3) 951-961
  • 131 Schaiff W T, Knapp Jr F F, Barak Y, Biron-Shental T, Nelson D M, Sadovsky Y. Ligand-activated peroxisome proliferator activated receptor gamma alters placental morphology and placental fatty acid uptake in mice.  Endocrinology. 2007;  148 (8) 3625-3634
  • 132 Schaiff W T, Bildirici I, Cheong M, Chern P L, Nelson D M, Sadovsky Y. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts.  J Clin Endocrinol Metab. 2005;  90 (7) 4267-4275
  • 133 Garg M, Thamotharan M, Oak S A et al.. Early exercise regimen improves insulin sensitivity in the intrauterine growth-restricted adult female rat offspring.  Am J Physiol Endocrinol Metab. 2009;  296 (2) E272-E281
  • 134 Eriksson J G, Ylihärsilä H, Forsén T, Osmond C, Barker D J. Exercise protects against glucose intolerance in individuals with a small body size at birth.  Prev Med. 2004;  39 (1) 164-167
  • 135 Koves T R, Ussher J R, Noland R C et al.. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.  Cell Metab. 2008;  7 (1) 45-56
  • 136 Kim J Y, Hickner R C, Cortright R L, Dohm G L, Houmard J A. Lipid oxidation is reduced in obese human skeletal muscle.  Am J Physiol Endocrinol Metab. 2000;  279 (5) E1039-E1044
  • 137 Simoneau J A, Veerkamp J H, Turcotte L P, Kelley D E. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss.  FASEB J. 1999;  13 (14) 2051-2060
  • 138 Godfrey K M, Lillycrop K A, Burdge G C, Gluckman P D, Hanson M A. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease.  Pediatr Res. 2007;  61 (5 Pt 2) 5R-10R
  • 139 Evans R M, Barish G D, Wang Y X. PPARs and the complex journey to obesity.  Nat Med. 2004;  10 (4) 355-361
  • 140 Kumar N, Dey C S. Development of insulin resistance and reversal by thiazolidinediones in C2C12 skeletal muscle cells.  Biochem Pharmacol. 2003;  65 (2) 249-257
  • 141 Kim J E, Chen J. regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis.  Diabetes. 2004;  53 (11) 2748-2756
  • 142 Benton C R, Holloway G P, Campbell S E et al.. Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36) but not carnitine palmitoyltransferase I in rat muscle mitochondria.  J Physiol. 2008;  586 (6) 1755-1766
  • 143 Luquet S, Lopez-Soriano J, Holst D et al.. Roles of peroxisome proliferator-activated receptor delta (PPARdelta) in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome.  Biochimie. 2004;  86 (11) 833-837
  • 144 Luquet S, Lopez-Soriano J, Holst D et al.. Roles of peroxisome proliferator-activated receptor delta (PPARdelta) in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome.  Biochimie. 2004;  86 (11) 833-837
  • 145 Fiévet C, Fruchart J C, Staels B. PPARalpha and PPARgamma dual agonists for the treatment of type 2 diabetes and the metabolic syndrome.  Curr Opin Pharmacol. 2006;  6 (6) 606-614
  • 146 Grimaldi P A. Regulatory role of peroxisome proliferator-activated receptor delta (PPAR delta) in muscle metabolism. A new target for metabolic syndrome treatment?.  Biochimie. 2005;  87 (1) 5-8
  • 147 Takahashi S, Tanaka T, Kodama T, Sakai J. Peroxisome proliferator-activated receptor delta (PPARdelta), a novel target site for drug discovery in metabolic syndrome.  Pharmacol Res. 2006;  53 (6) 501-507
  • 148 Sprecher D L, Massien C, Pearce G et al.. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist.  Arterioscler Thromb Vasc Biol. 2007;  27 (2) 359-365
  • 149 Howitz K T, Bitterman K J, Cohen H Y et al.. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.  Nature. 2003;  425 (6954) 191-196
  • 150 Sakkinen P A, Wahl P, Cushman M, Lewis M R, Tracy R P. Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome.  Am J Epidemiol. 2000;  152 (10) 897-907
  • 151 Law C M, Shiell A W. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature.  J Hypertens. 1996;  14 (8) 935-941
  • 152 Curhan G C, Willett W C, Rimm E B, Spiegelman D, Ascherio A L, Stampfer M J. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men.  Circulation. 1996;  94 (12) 3246-3250
  • 153 Nilsson P M, Ostergren P O, Nyberg P, Söderström M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149378 Swedish boys.  J Hypertens. 1997;  15 (12 Pt 2) 1627-1631
  • 154 Huxley R R, Shiell A W, Law C M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature.  J Hypertens. 2000;  18 (7) 815-831
  • 155 Grigore D, Ojeda N B, Robertson E B et al.. Placental insufficiency results in temporal alterations in the renin angiotensin system in male hypertensive growth restricted offspring.  Am J Physiol Regul Integr Comp Physiol. 2007;  293 (2) R804-R811
  • 156 Alexander B T. Placental insufficiency leads to development of hypertension in growth-restricted offspring.  Hypertension. 2003;  41 (3) 457-462
  • 157 Wlodek M E, Westcott K, Siebel A L, Owens J A, Moritz K M. Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats.  Kidney Int. 2008;  74 (2) 187-195
  • 158 Verma S, Anderson T J. Fundamentals of endothelial function for the clinical cardiologist.  Circulation. 2002;  105 (5) 546-549
  • 159 Celermajer D S, Sorensen K E, Bull C, Robinson J, Deanfield J E. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction.  J Am Coll Cardiol. 1994;  24 (6) 1468-1474
  • 160 Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher A M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.  Nature. 1999;  399 (6736) 601-605
  • 161 Montagnani M, Golovchenko I, Kim I et al.. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells.  J Biol Chem. 2002;  277 (3) 1794-1799
  • 162 Musicki B, Liu T, Lagoda G A et al.. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase.  J Sex Med. 2010;  7 (9) 3023-3032
  • 163 Li H, Li H, Bao Y, Zhang X, Yu Y. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-kappaB pathway in rat aorta.  Int J Cardiol. 2010;  August 5 (Epub ahead of print)
  • 164 Goodfellow J, Bellamy M F, Gorman S T et al.. Endothelial function is impaired in fit young adults of low birth weight.  Cardiovasc Res. 1998;  40 (3) 600-606
  • 165 Leeson C P, Kattenhorn M, Morley R, Lucas A, Deanfield J E. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life.  Circulation. 2001;  103 (9) 1264-1268
  • 166 Martin H, Hu J, Gennser G, Norman M. Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight.  Circulation. 2000;  102 (22) 2739-2744
  • 167 Leeson C P, Whincup P H, Cook D G et al.. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors.  Circulation. 1997;  96 (7) 2233-2238
  • 168 Payne J A, Alexander B T, Khalil R A. Reduced endothelial vascular relaxation in growth-restricted offspring of pregnant rats with reduced uterine perfusion.  Hypertension. 2003;  42 (4) 768-774
  • 169 Berliner J A, Heinecke J W. The role of oxidized lipoproteins in atherogenesis.  Free Radic Biol Med. 1996;  20 (5) 707-727
  • 170 Huang K, Zou C C, Yang X Z, Chen X Q, Liang L. Carotid intima-media thickness and serum endothelial marker levels in obese children with metabolic syndrome.  Arch Pediatr Adolesc Med. 2010;  164 (9) 846-851
  • 171 Redon J, Cifkova R, Laurent S et al.. Mechanisms of hypertension in the cardiometabolic syndrome.  J Hypertens. 2009;  27 (3) 441-451
  • 172 Oren A, Vos L E, Uiterwaal C S, Gorissen W H, Grobbee D E, Bots M L. Birth weight and carotid intima-media thickness: new perspectives from the atherosclerosis risk in young adults (ARYA) study.  Ann Epidemiol. 2004;  14 (1) 8-16
  • 173 Koklu E, Kurtoglu S, Akcakus M et al.. Increased aortic intima-media thickness is related to lipid profile in newborns with intrauterine growth restriction.  Horm Res. 2006;  65 (6) 269-275
  • 174 Koklu E, Ozturk M A, Kurtoglu S, Akcakus M, Yikilmaz A, Gunes T. Aortic intima-media thickness, serum IGF-I, IGFBP-3, and leptin levels in intrauterine growth-restricted newborns of healthy mothers.  Pediatr Res. 2007;  62 (6) 704-709
  • 175 Morgan D A, Rahmouni K. Differential effects of insulin on sympathetic nerve activity in agouti obese mice.  J Hypertens. 2010;  28 (9) 1913-1919
  • 176 Lambert G W, Straznicky N E, Lambert E A, Dixon J B, Schlaich M P. Sympathetic nervous activation in obesity and the metabolic syndrome—causes, consequences and therapeutic implications.  Pharmacol Ther. 2010;  126 (2) 159-172
  • 177 Jansson T, Lambert G W. Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3-4 months of age.  J Hypertens. 1999;  17 (9) 1239-1248
  • 178 Ojeda N B, Royals T P, Black J T, Dasinger J H, Johnson J M, Alexander B T. Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspring.  Am J Physiol Regul Integr Comp Physiol. 2010;  298 (5) R1421-R1427
  • 179 Grigore D, Ojeda N B, Robertson E B et al.. Placental insufficiency results in temporal alterations in the renin angiotensin system in male hypertensive growth restricted offspring.  Am J Physiol Regul Integr Comp Physiol. 2007;  293 (2) R804-R811
  • 180 Konje J C, Okaro C I, Bell S C, de Chazal R, Taylor D J. A cross-sectional study of changes in fetal renal size with gestation in appropriate- and small-for-gestational-age fetuses.  Ultrasound Obstet Gynecol. 1997;  10 (1) 22-26
  • 181 Spencer J, Wang Z, Hoy W. Low birth weight and reduced renal volume in Aboriginal children.  Am J Kidney Dis. 2001;  37 (5) 915-920
  • 182 Hinchliffe S A, Lynch M R, Sargent P H, Howard C V, Van Velzen D. The effect of intrauterine growth retardation on the development of renal nephrons.  Br J Obstet Gynaecol. 1992;  99 (4) 296-301
  • 183 Moritz K M, Mazzuca M Q, Siebel A L et al.. Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats.  J Physiol. 2009;  587 (Pt 11) 2635-2646
  • 184 Martin J A, Osterman M J, Sutton P D. Are preterm births on the decline in the United States? Recent data from the National Vital Statistics System.  NCHS Data Brief. 2010;  39 1-8
  • 185 Martin J A, Hamilton B E, Sutton P D Centers for Disease Control and Prevention National Center for Health Statistics National Vital Statistics System et al. Births: final data for 2005.  Natl Vital Stat Rep. 2007;  56 (6) 1-103

Timothy R.H. RegnaultPh.D. 

Department of Obstetrics and Gynaecology

The University of Western Ontario, London, ON, Canada N6A 5C1

Email: tim.regnault@uwo.ca

    >