Exp Clin Endocrinol Diabetes 2011; 119(4): 243-251
DOI: 10.1055/s-0030-1267202
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Obesity of TallyHO/JngJ Mouse Is Due to Increased Food Intake with Early Development of Leptin Resistance

S. D. Rhee1 , Y. Y. Sung1 , Y. S. Lee1 , J. Y. Kim1 , W. H. Jung1 , M. J. Kim1 , M.-S. Lee2 , M. K. Lee2 , S.-D. Yang1 , 3 , H. G. Cheon1 , 4
  • 1Center for Metabolic Syndrome Therapeutics, Korea Research Institute of Chemical Technology, Daejon, Korea
  • 2Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 3Department of Biological Engineering, Yanbian University of Science and Technology, Yanji City, Jilin Province, China
  • 4Department of Pharmacology and Pharmaceutical Sciences, Gachon University of Medicine and Science, Incheon, Korea
Further Information

Publication History

received 04.05.2010 first decision 31.08.2010

accepted 20.09.2010

Publication Date:
28 October 2010 (online)

Abstract

TALLYHO/JngJ (TallyHo) mouse is a recently established animal model for type 2 diabetes mellitus (T2DM) with phenotypes of mild obesity and male-limited hyperglycemia. In this study, we investigated how obesity develops in TallyHo mice by measuring parameters of food intake and energy expenditure. At 4 weeks of age, TallyHo mice were heavier than control C57BL/6 mice with increased food intake but comparable energy expenditure parameters, such as body temperature, cold-induced thermogenesis, oxygen consumption rate (VO2) and spontaneous locomotor activity. Furthermore, pair-fed TallyHo mice, which were fed the same amount of food as C57BL/6 mice, showed similar patterns of body weight gain to C57BL/6 mice at all ages, implying that obesity in TallyHo mice may develop by increased food intake but not by decreased energy consumption. TallyHo mice appear to have hypothalamic leptin resistance at 4 weeks of age, as indicated by the increased expression of orexigenic neuropeptides in the hypothalamus and no alteration of food intake and neuropeptide expression upon intravenous leptin treatment. Leptin injection to TallyHo mice, however, increased the phosphorylation of STAT3 and Akt, an important signaling mediator of leptin, in a pattern similar to that in C57BL/6 mice. In conclusion, increased food intake is a crucial component in the development of obesity in TallyHo mice, in which central leptin resistance, possibly caused by uncoupling between activation of leptin signaling and neuropeptide expression, might be involved.

References

  • 1 Ahima RS, Flier JS. Leptin.  Annu Rev Physiol. 2000;  62 413-437
  • 2 Bjorbaek C, Elmquist JK, Frantz JD. et al . 1998 Identification of SOCS-3 as a potential mediator of central leptin resistance.  Mol Cell. 1998;  1 619-625
  • 3 Bray GA, York DA. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis.  Physiol Rev. 1979;  59 719-809
  • 4 Burguera B, Couce ME, Curran GL. et al . Obesity is associated with a decreased leptin transport across the blood-brain barrier in rats.  Diabetes. 2000;  49 1219-1223
  • 5 Clement K, Vaisse C, Lahlou N. et al . A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.  Nature. 1998;  392 398-401
  • 6 El-Haschimi K, Pierroz DD, Hileman SM. et al . Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity.  J Clin Invest. 2000;  105 1827-1832
  • 7 Erickson JC, Hollopeter G, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y.  Science. 1996;  274 1704-1707
  • 8 Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals.  Nature. 1998;  395 763-770
  • 9 Halaas JL, Boozer C, Blair-West J. et al . Physiological response to long-term peripheral and central leptin infusion in lean and obese mice.  Proc Natl Acad Sci USA. 1997;  94 8878-8883
  • 10 Jequier E, Tappy L. Regulation of body weight in humans.  Physiol Rev. 1999;  79 451-480
  • 11 Jurgens HS, Schurmann A, Kluge R. et al . Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice.  Physiol Genomics. 2006;  25 234-241
  • 12 Kim JH, Nishina PM, Naggert JK. Genetic models for noninsulin dependent diabetes mellitus in rodents.  J Basic Clin Physiol Pharmacol. 1998;  9 325-345
  • 13 Kim JH, Sen S, Avery CS. et al . Genetic analysis of a new mouse model for non-insulin-dependent diabetes.  Genomics. 2001;  74 273-286
  • 14 Kim JH, Stewart TP, Zhang W. et al . Type 2 diabetes mouse model TallyHo carries an obesity gene on chromosome 6 that exaggerates dietary obesity.  Physiol Genomics. 2005;  22 171-181
  • 15 Kim JH, Stewart TP, Soltani-Bejnood M. et al . Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice.  J Endocrinol. 2006;  191 437-446
  • 16 Kluge R, Bahrenberg G, Plum L. et al . Quantitative trait loci for obesity and insulin resistance (Nob1, Nob2) and their interaction with the leptin receptor allele (LeprA720T/T10441) in New Zealand obese mice.  Diabetologia. 2000;  43 1565-1572
  • 17 Kopelman PG. Obesity as a medical problem.  Nature. 2000;  404 635-643
  • 18 Korner J, Savontaus E, Chua SC. et al . Leptin regulation of Agrp and Npy mRNA in the rat hypothalamus.  J Neuroendocrinol. 2001;  13 959-966
  • 19 Leiter EH, Reifsnyder PC, Flurkey K. et al . Deleterious synergism by both parental genomes contributes to diabetogenic thresholds.  Diabetes. 1998;  47 1287-1295
  • 20 Levin BE, Dunn-Meynell AA, Banks WA. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset.  Am J Physiol-Regul, Intergrat Comparat Physiol. 2004;  286 R143-R150
  • 21 Levin N, Nelson C, Gurney A. et al . Decreased food intake does not completely account for adiposity reduction after ob protein infusion.  Proc Natl Acad Sci USA. 1996;  93 1726-1730
  • 22 Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis.  Nature. 2000;  404 652-660
  • 23 Margetic S, Gazzola C, Pegg GG. et al . Leptin: a review of its peripheral actions and interactions.  Int J Obesity Relat Metab Disord. 2002;  26 1407-1433
  • 24 McMinn JE, Liu SM, Liu H. et al . Neuronal deletion of Lepr elicits diabesity in mice without affecting cold tolerance or fertility.  Am J Physiol-Endocrinol Metab. 2005;  289 E403-E411
  • 25 Montague CT, Farooqi IS, Whitehead JP. et al . Congenital leptin deficiency is associated with severe early-onset obesity in humans.  Nature. 1997;  387 903-908
  • 26 Montez JM, Soukas A, Asilmaz E. et al . Acute leptin deficiency, leptin resistance, and the physiologic response to leptin withdrawal.  Proc Natl Acad Sci USA. 2005;  102 2537-2542
  • 27 Ravussin E, Bogardus C. Energy balance and weight regulation: genetics versus environment.  Brit J Nutri. 2000;  83 (S 01) S17-S20
  • 28 Rhee SD, Jeong WH, Sung YY. et al . Characteristics of the newly established diabetic model mice, TallyHo mice.  J Kor Diabetes Assoc. 2004;  28 177-186
  • 29 Rizk NM, Liu LS, Eckel J. Hypothalamic expression of neuropeptide-Y in the New Zealand obese mouse.  Int J Obes. 1998;  22 1172-1177
  • 30 Robinson SW, Dinulescu DM, Cone RD. Genetic models of obesity and energy balance in the mouse.  Annu Rev Genet. 2000;  34 687-745
  • 31 Sahu A, Metlakunta AS. Hypothalamic phosphatidylinositol 3-kinase- phosphodiesterase 3B-cyclic AMP pathway of leptin signalling is impaired following chronic central leptin infusion.  J Neuroendocrinol. 2005;  17 720-726
  • 32 Scarpace PJ, Matheny M, Zhang Y. et al . Leptin-induced leptin resistance reveals separate roles for the anorexic and thermogenic responses in weight maintenance.  Endocrinol. 2002;  143 3026-3035
  • 33 Schwartz MW, Seeley RJ, Campfield LA. et al . Identification of targets of leptin action in rat hypothalamus.  J Clin Invest. 1996;  98 1101-1106
  • 34 Schwartz MW, Woods SC, Porte Jr D. et al . Central nervous system control of food intake.  Nature. 2000;  404 661-671
  • 35 Spiegelman BM, Flier JS. Obesity and the regulation of energy balance.  Cell. 2001;  104 531-543
  • 36 Stein CJ, Colditz GA. The epidemic of obesity.  J Clin Endocrinol Metab. 2004;  89 2522-2525
  • 37 Stephens TW, Basinski M, Bristow PK. et al . The role of neuropeptide Y in the antiobesity action of the obese gene product.  Nature. 1995;  377 530-532
  • 38 Sung YY, Lee YS, Jung WH. et al . Glucose intolerance in young TallyHo mice is induced by leptin-mediated inhibition of insulin secretion.  Biochem Biophys Res Commun. 2005;  338 1779-1787
  • 39 Zarjevski N, Cusin I, Vettor R. et al . Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity.  Endocrinol. 1993;  133 1753-1758
  • 40 Zurlo F, Ferraro RT, Fontvielle AM. et al . Spontaneous physical activity and obesity: cross-sectional and longitudinal studies in Pima Indians.  Am J Physiol. 1992;  263 E296-E300
  • 41 Wang ZW, Zhou YT, Kakuma T. et al . Comparing the hypothalamic and extrahypothalamic actions of endogenous hyperleptinemia.  Proc Natl Acad Sci USA. 1999;  96 10373-10378

Correspondence

H. G. Cheon,PhD 

Department of Pharmacology and Pharmaceutical Sciences

Gachon University of Medicine and Science

Yeonsu-3 dong

Yeonsu-Gu

406-799 Incheon

Korea

Phone: +82/32/820 4761

Fax: +82/32/820 4744

Email: hgcheon@gachon.ac.kr

    >