Gesundheitsökonomie & Qualitätsmanagement 2010; 15(4): 199-207
DOI: 10.1055/s-0029-1245444
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Eine SWOT (Stärken, Schwächen, Chancen und Gefahren)-Analyse der aktuellen digitalen Radiografiesysteme in der Thorax- und Skelettdiagnostik

A SWOT (Strengths, Weaknesses, Opportunities and Threats) Analysis of Current Digital Radiography Systems for Thorax- and Skeletal DiagnosticsA. Stadlbauer1 , 2 , E. Salomonowitz1 , R. Radlbauer1 , G. Salomonowitz3 , F. Lomoschitz1
  • 1Landesklinikum St. Pölten, Zentrales Institut für Radiologie, Diagnostik und Interventionelle Therapie, St. Pölten
  • 2Universität Erlangen-Nürnberg, Neurochirurgische Klinik, Erlangen
  • 3Fachhochschule Campus Wien, Radiologietechnologie, Wien
Further Information

Publication History

Publication Date:
05 August 2010 (online)

Zusammenfassung

Zielsetzung: Ziel war eine Evaluierung der Stärken und Schwächen und der damit verbundenen Chancen und Gefahren, auch SWOT-Analyse, der aktuellen digitalen Radiografiesysteme. Damit soll Radiologen für die Anschaffung eines Radiografiesystems eine Hilfestellung zur Entscheidungsfindung zur Seite gestellt werden. Methodik: Die aktuell auf dem Markt befindlichen Technologien für die Speicherfolienradiografie (CR) und Direktradiografie (DR) wurden einer systematischen Analyse unterzogen. Dazu wurden sie hinsichtlich der physikalischen Leistungsmerkmale, der diagnostischen Genauigkeit, dem Potenzial zur Strahlendosisreduktion und ökonomischen Parameter evaluiert und in SWOT-Tabellen gegenübergestellt. Ergebnisse: Die physikalischen Leistungsparameter und die diagnostische Genauigkeit zeigen einen klaren Vorteil für DR-Systeme mittels TFT (thin-film transistor) gegenüber Speicherfolien. Nadelkristalldetektoren sind eine wichtige Weiterentwicklung der CR-Systeme, da sie hinsichtlich der physikalischen Parameter mit DR-Systemen vergleichbar sind. Speicherfoliensysteme stellen durch niedrige Anschaffungskosten, leichte Integrierbarkeit in bestehende Filmfolien-Systeme und einfache Durchführung von Untersuchungen in der Intensiv- und Notfallradiografie eine potenzielle Alternative dar. Zudem haben technologische Entwicklungen wie dual-side reading und ScanHead zu einer höheren Konkurrenzfähigkeit von CR-Systemen gesorgt. Schlussfolgerung: Die Frage nach dem am besten geeigneten digitalen Radiografiesystem hängt entscheidend von den gestellten Anforderungen und dem Einsatzgebiet ab und lässt sich nicht einfach und klar beantworten. Anhand der beschriebenen Stärken und Schwächen der digitalen Radiografiesysteme kann der Radiologe kaufmännisch analysieren, welche Chancen und Gefahren auf die Geschäftseinheit zukommen können.

Abstract

Purpose: To evaluate the strengths, weaknesses, opportunities and threats (SWOT analysis) of the current digital radiography systems for thorax- and skeletal diagnostics. To provide assistance for radiologists, who have to decide on the acquisition of a radiography system. Materials and Methods: The computed radiography (CR) and direct radiography (DR) technologies which are commercially available were evaluated systematically regarding their physical characteristics, diagnostic accuracy, potential for dose reduction and economic parameters. These facts were presented in SWOT tables. Results: The physical parameters and diagnostic accuracy show a clear advantage for DR systems using TFT (thin film transistor) over storage-phosphor image plates (IP). These advantages enable the potential for dose reduction too. Needle-structured IP represent an important development of CR systems. They are comparable with DR-systems using TFT regarding the physical parameters. CR-systems represent a potential alternative, due to their low costs of acquisition, the possibility for easy integration into existing film-screen systems, and their simple handling in intensive care and emergency radiography. Technological developments like dual-side reading and ScanHead improved the competitiveness of CR systems. Conclusion: Which digital radiography system might be best suited for specific site depends crucially on the requirements posed and the operational area. The answer to this question is not simple. On basis of the strengths and weaknesses of the digital radiography systems, the radiologist is able to analyze the opportunities and threats for the business unit.

Literatur

  • 1 Schaefer-Prokop C, Uffmann M, Eisenhuber E et al. Digital radiography of the chest: detector techniques and performance parameters.  J Thorac Imaging. 2003;  18 124-137
  • 2 Seibert J A. Digital radiography: CR versus DR? Time to reconsider the options, the definitions, and current capabilities.  Appl Radiol Suppl. 2007;  36 4-7
  • 3 Romlein J. CR versus DR: Blurred lines of distinction.  Appl Radiol Suppl. 2007;  36 8-10
  • 4 Neitzel U. Status and prospects of digital detector technology for CR and DR.  Radiat Prot Dosimetry. 2005;  114 32-38
  • 5 Korner M, Weber C H, Wirth S et al. Advances in digital radiography: physical principles and system overview.  Radiographics. 2007;  27 675-686
  • 6 Rowlands J A. The physics of computed radiography.  Phys Med Biol. 2002;  47 R123-166
  • 7 Fasbender R, Schaetzing R. New computed radiography technologies in digital radiography.  Radiologe. 2003;  43 367-373
  • 8 Leblans P, Struye L, Willems P. A new needle-crystalline computed radiography detector.  J Digit Imaging. 2000;  13 117-120
  • 9 Loncke F, Vrielinck H, Matthys P et al. Electron paramagnetic resonance study of a Eu2 + related defect in CsBr:Eu needle image plates for computed radiography.  Spectrochim Acta A Mol Biomol Spectrosc. 2008;  69 1322-1326
  • 10 Uffmann M, Schaefer-Prokop C, Neitzel U. [Balance of required dose and image quality in digital radiography].  Radiologe. 2008;  48 249-257
  • 11 Riccardi L, Cauzzo M C, Fabbris R et al. Comparison between a built-in „dual side” chest imaging device and a standard „single side” CR.  Med Phys. 2007;  34 119-126
  • 12 Fetterly K A, Schueler B A. Performance evaluation of a „dual-side read” dedicated mammography computed radiography system.  Med Phys. 2003;  30 1843-1854
  • 13 Monnin P, Holzer Z, Wolf R et al. An image quality comparison of standard and dual-side read CR systems for pediatric radiology.  Med Phys. 2006;  33 411-420
  • 14 Cowen A R, Davies A G, Kengyelics S M. Advances in computed radiography systems and their physical imaging characteristics.  Clin Radiol. 2007;  62 1132-1141
  • 15 Volk M, Hamer O W, Feuerbach S et al. Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature.  Eur Radiol. 2004;  14 827-834
  • 16 Kotter E, Langer M. Digital radiography with large-area flat-panel detectors.  Eur Radiol. 2002;  12 2562-2570
  • 17 Spahn M, Heer V, Freytag R. Flat-panel detectors in X-ray systems.  Radiologe. 2003;  43 340-350
  • 18 Schaefer-Prokop C, Uffmann M, Sailer J et al. Digital thorax radiography: flat-panel detector or storage phosphor plates.  Radiologe. 2003;  43 351-361
  • 19 Cowen A R, Kengyelics S M, Davies A G. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics.  Clin Radiol. 2008;  63 487-498
  • 20 Chotas H G, Dobbins 3rd  J T, Ravin C E. Principles of digital radiography with large-area, electronically readable detectors: a review of the basics.  Radiology. 1999;  210 595-599
  • 21 Homburg C. Quantitative Betriebswirtschaftslehre: Entscheidungsunterstützung durch Modelle. Wiesbaden: Gabler; 2000: 134-135
  • 22 Aumayr K J. Erfolgreiches Produktmanagement: Tool-Box für das professionelle Produktmanagement und Produktmarketing. Wiesbaden: Gabler; 2006: 244-248
  • 23 Ortiz A O, Luyckx M P. Preparing a business justification for going electronic.  Radiol Manage. 2002;  24 14-21
  • 24 Chan S. The importance of strategy for the evolving field of radiology.  Radiology. 2002;  224 639-648
  • 25 Korner M, Wirth S, Treitl M et al. Initial clinical results with a new needle screen storage phosphor system in chest radiograms.  Fortschr Röntgenstr. 2005;  177 1491-1496
  • 26 Heyne J P, Mentzel H J, Neumann R et al. Phantom Examination for Reduction of Radiation Dose Using New Needle Screen Storage Phosphor Radiography and Add Beam Filter in Digital Thoracic Radiography on Adolescents and Larger Children.  Fortschr Röntgenstr. 2008;  180 231-237
  • 27 Rong X J, Shaw C C, Liu X et al. Comparison of an amorphous silicon/cesium iodide flat-panel digital chest radiography system with screen/film and computed radiography systems – a contrast-detail phantom study.  Med Phys. 2001;  28 2328-2335
  • 28 Redlich U, Reissberg S, Hoeschen C et al. Chest radiography: ROC phantom study of four different digital systems and one conventional radiographic system.  Fortschr Röntgenstr. 2003;  175 38-45
  • 29 Peer S, Neitzel U, Giacomuzzi S M et al. Comparison of low-contrast detail perception on storage phosphor radiographs and digital flat panel detector images.  IEEE Trans Med Imaging. 2001;  20 239-242
  • 30 Herrmann A, Bonel H, Stabler A et al. Chest imaging with flat-panel detector at low and standard doses: comparison with storage phosphor technology in normal patients.  Eur Radiol. 2002;  12 385-390
  • 31 McAdams H P, Samei E, Dobbins 3 rd J et al. Recent advances in chest radiography.  Radiology. 2006;  241 663-683
  • 32 Reiner B I, Salkever D, Siegel E L et al. Multi-institutional analysis of computed and direct radiography: part II. Economic analysis.  Radiology. 2005;  236 420-426
  • 33 Andriole K P. Productivity and cost assessment of computed radiography, digital radiography, and screen-film for outpatient chest examinations.  J Digit Imaging. 2002;  15 161-169
  • 34 Kirchner J, Stueckle C A, Schilling E M et al. Efficacy of daily bedside chest radiography as visualized by digital luminescence radiography.  Australas Radiol. 2001;  45 444-447
  • 35 Seibert J A. Digital radiography: image quality and radiation dose.  Health Phys. 2008;  95 586-598
  • 36 Mackenzie A, Honey I D. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors.  Med Phys. 2007;  34 3345-3357
  • 37 Monnin P, Holzer Z, Wolf R et al. Influence of cassette type on the DQE of CR systems.  Med Phys. 2006;  33 3637-3639
  • 38 Fischbach F, Ricke J, Freund T et al. Flat panel digital radiography compared with storage phosphor computed radiography: assessment of dose versus image quality in phantom studies.  Invest Radiol. 2002;  37 609-614
  • 39 Uffmann M, Prokop M, Eisenhuber E et al. Computed radiography and direct radiography: influence of acquisition dose on the detection of simulated lung lesions.  Invest Radiol. 2005;  40 249-256
  • 40 Andriole K P, Luth D M, Gould R G. Workflow assessment of digital versus computed radiography and screen-film in the outpatient environment.  J Digit Imaging. 2002;  15 Suppl 1 124-126
  • 41 Reiner B I, Siegel E L, Hooper F J et al. Multi-institutional analysis of computed and direct radiography: part I. Technologist productivity.  Radiology. 2005;  236 413-419
  • 42 Veldkamp W J, Kroft L J, Boot M V et al. Contrast-detail evaluation and dose assessment of eight digital chest radiography systems in clinical practice.  Eur Radiol. 2006;  16 333-341
  • 43 Kroft L J, Veldkamp W J, Mertens B J et al. Comparison of eight different digital chest radiography systems: variation in detection of simulated chest disease.  Am J Roentgenol. 2005;  185 339-346
  • 44 Grampp S, Czerny C, Krestan C et al. Flat-screen detector systems in skeletal radiology.  Radiologe. 2003;  43 362-366
  • 45 Illers H, Buhr E, Gunther-Kohfahl S et al. Measurement of the modulation transfer function of digital X-ray detectors with an opaque edge-test device.  Radiat Prot Dosimetry. 2005;  114 214-219
  • 46 Fischbach F, Freund T, Rottgen R et al. Dual-energy chest radiography with a flat-panel digital detector: revealing calcified chest abnormalities.  Am J Roentgenol. 2003;  181 1519-1524
  • 47 Illers H, Buhr E, Hoeschen C. Measurement of the detective quantum efficiency (DQE) of digital X-ray detectors according to the novel standard IEC 62 220 – 1.  Radiat Prot Dosimetry. 2005;  114 39-44
  • 48 Chotas H G, Ravin C E. Digital chest radiography with a solid-state flat-panel x-ray detector: contrast-detail evaluation with processed images printed on film hard copy.  Radiology. 2001;  218 679-682
  • 49 Fink C, Hallscheidt P J, Noeldge G et al. Clinical comparative study with a large-area amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography.  Am J Roentgenol. 2002;  178 481-486
  • 50 Floyd C E, Warp R J, Dobbins 3 rd J T et al. Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography.  Radiology. 2001;  218 683-688
  • 51 Geijer Jr H, Beckman K W, Andersson T et al. Image quality vs. radiation dose for a flat-panel amorphous silicon detector: a phantom study.  Eur Radiol. 2001;  11 1704-1709
  • 52 Bath M, Sund P, Mansson L G. Evaluation of the imaging properties of two generations of a CCD-based system for digital chest radiography.  Med Phys. 2002;  29 2286-2297

Dr. A. Stadlbauer

Landesklinikum St. Pölten, Zentrales Institut für Radiologie, Diagnostik und Interventionelle Therapie

Propst-Führer-Straße 4

3100 St. Pölten

Österreich

Email: andi@nmr.at

    >