Semin Thromb Hemost 2009; 35(1): 009-022
DOI: 10.1055/s-0029-1214144
© Thieme Medical Publishers

Milestones and Perspectives in Coagulation and Hemostasis

Giuseppe Lippi1 , Emmanuel J. Favaloro2 , Massimo Franchini3 , Gian Cesare Guidi1
  • 1Sezione di Chimica Clinica, Università di Verona, Verona, Italy
  • 2Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
  • 3Servizio di Immunoematologia e Trasfusione – Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
Further Information

Publication History

Publication Date:
23 March 2009 (online)

ABSTRACT

Hemostasis is traditionally defined as the physiologic process whereby bleeding is antagonized and possibly stopped to minimize blood loss. The first medical description of the clinical and inherited features of hemostasis can be dated back more than 1000 years, when Abu al-Qasim Khalaf ibn ‘Abbas al-Andalusi al-Zahrawi’ medical treatise provided some initial insights into this puzzling process. Since then, continuous and revolutionary scientific developments have contributed to decoding several aspects of this intricate but essential physiologic phenomenon, providing a reliable model to explain the leading mechanisms involved. Although the point at which bleeding stops is commonly referred to as “coagulation,” blood coagulation is actually only one part of a two-part hemostatic process that develops through sequential steps referred to as primary and secondary hemostasis. Throughout its activation and development, the coagulation cascade is strictly regulated by a series of natural inhibitors, which prevent unnecessary and excessive clotting. The aim of this article is to provide a concise overview of the major discoveries and past and current perspectives in coagulation and hemostasis.

REFERENCES

  • 1 al-Qasim Khalaf A, al-Andalusi al-Zahraw A. Medical treatise Kitab al-tasrîf liman ajaza an al-talîf fi al-tibbAvailable at: http://www.museumwnf.net/database_item.php?id=object;ISL;ma;Mus01_F;16;en Accessed February 27, 2009
  • 2 Schultze M. Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes.  Arch Mikrosc Anat. 1865;  1 1-42
  • 3 Bizzozero J. Über einen neuen Forrnbestandteil des Blutes und dessen Rolle bei der Thrombose und Blutgerinnung.  Arch Pathol Anat Physiol Klin Med. 1882;  90 261-332
  • 4 Brewer D B. Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet.  Br J Haematol. 2006;  133 251-258
  • 5 Hayward C P, Eikelboom J. Platelet function testing: quality assurance.  Semin Thromb Hemost. 2007;  33 273-282
  • 6 Briggs C, Harrison P, Machin S J. Continuing developments with the automated platelet count.  Int J Lab Hematol. 2007;  29 77-91
  • 7 Singh H, Chaudhary R, Ray V. Platelet indices as quality markers of platelet concentrates during storage.  Clin Lab Haematol. 2003;  25 307-310
  • 8 Abe Y, Wada H, Sakakura M et al.. Usefulness of fully automated measurement of reticulated platelets using whole blood.  Clin Appl Thromb Hemost. 2005;  11 263-270
  • 9 Althaus K, Greinacher A. MYH9-related platelet disorders.  Semin Thromb Hemost. 2009;  , in press
  • 10 The British Society for Haematology BCSH Haemostasis and Thrombosis Task Force . Guidelines on platelet function testing.  J Clin Pathol. 1988;  41 1322-1330
  • 11 Ivy A C, Nelson D, Buchet C. The standardization of certain factors in the cutaneous “venostasis” bleeding time technique.  J Lab Clin Med. 1941;  26 1812-1941
  • 12 Favaloro E J, Smith J, Petinos P, Collecutt M, Street A, Hertzberg M. on behalf of the RCPA Quality Assurance Program (QAP) in Haematology Scientific Haemostasis Advisory Panel . Laboratory testing, diagnosis and management of von Willebrand's disease: current practice in Australasia.  Am J Clin Pathol. 1999;  112 712-719
  • 13 Fressinaud E, Veyradier A, Truchaud F et al.. Screening for von Willebrand disease with a new analyser using high shear stress: a study of 60 cases.  Blood. 1998;  91 1325-1331
  • 14 Lind S E. The bleeding time does not predict surgical bleeding.  Blood. 1991;  77 2547-2552
  • 15 De Caterina R, Lanza M, Manca G, Strata G B, Maffei S, Salvatore L. Bleeding time and bleeding: an analysis of the relationship of the bleeding time test with parameters of surgical bleeding.  Blood. 1994;  84 3363-3370
  • 16 Born G V. Aggregation of blood platelets by adenosine diphosphate and its reversal.  Nature. 1962;  194 927-929
  • 17 McGlasson D, Fritsma G A. Whole blood aggregometry.  Semin Thromb Hemost. 2009;  , in press
  • 18 Cattaneo M. Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function.  Semin Thromb Hemost. 2009;  , in press
  • 19 Cardigan R, Turner C, Harrison P. Current methods of assessing platelet function: relevance to transfusion medicine.  Vox Sang. 2005;  88 153-163
  • 20 Favaloro E J. Internal quality control and external quality assesment of platelet function tests.  Semin Thromb Hemost. 2009;  , in press
  • 21 Hartert H. Blutgerinnungsstudien mit der Thrombeastographie, einem neuen Untersuchungsverfahren.  Klin Wochenschr. 1948;  26 577-583
  • 22 Luddington R J. Thrombelastography/thromboelastometry.  Clin Lab Haematol. 2005;  27 81-90
  • 23 Adams M, Ward C, Thom J et al.. Emerging technologies in hemostasis diagnostics: a report from the Australasian Society of Thrombosis and Haemostasis Emerging Technologies Group.  Semin Thromb Hemost. 2007;  33 226-234
  • 24 Watson H G, Greaves M. Can we predict bleeding?.  Semin Thromb Hemost. 2008;  34 97-103
  • 25 Dempfle C E, Borggrefe M. Point of care coagulation tests in critically ill patients.  Semin Thromb Hemost. 2008;  34 445-450
  • 26 Baumgartner H R. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi.  Microvasc Res. 1973;  5 167-179
  • 27 Kratzer M A, Born G V. Simulation of primary haemostasis in vitro.  Haemostasis. 1985;  15 357-362
  • 28 Favaloro E J. Clinical utility of the PFA-100.  Semin Thromb Hemost. 2008;  34 709-733
  • 29 Smith J W, Steinhubl S R, Lincoff A M et al.. Rapid platelet-function assay. An automated and quantitative cartridge-based method.  Circulation. 1999;  99 620-625
  • 30 Varon D, Savion N. Cone and platelet analyzer. In Michelson AD Platelets. London, UK; Academic Press 2002: 337-345
  • 31 Harrison P, Mumford A. Screening tests of platelet function – update on their appropriate uses for diagnostic testing.  Semin Thromb Hemost. 2009;  , in press
  • 32 Rinder H M. Platelet function testing by flow cytometry.  Clin Lab Sci. 1998;  11 365-372
  • 33 Enjeti A K, Lincz L F, Seldon M. Detection and measurement of microparticles: an evolving research tool for vascular biology.  Semin Thromb Hemost. 2007;  33 771-779
  • 34 Liu J, DeNofrio J, Yuan W, Wang Z, McFadden A W, Parise L V. Genetic manipulation of megakaryocytes to study platelet function.  Curr Top Dev Biol. 2008;  80 311-335
  • 35 Senzel L, Gnatenko D V, Bahou W F. Genomic and proteomic applications in diagnosis of platelet disorders and classification.  Semin Thromb Hemost. 2008;  34 532-538
  • 36 Franchini M, Lippi G. The role of von Willebrand factor in hemorrhagic and thrombotic disorders.  Crit Rev Clin Lab Sci. 2007;  44 115-149
  • 37 von Willebrand E A. Hereditar pseudohemofili.  Finska Lak-Sallsk Handl. 1926;  67 87-112
  • 38 Nilsson I M, Blomback M, Jorpes E. Von Villebrand's disease and its correction with human plasma fraction 1–0.  Acta Med Scand. 1957;  159 179-188
  • 39 Zimmerman T S, Ruggeri Z M. Coagulation and Bleeding Disorders: The Role of Factor VIII and von Willebrand Factor. New York, NY; Marcel Dekker 1989
  • 40 Owen W G, Wagner R H. Antihemophilic factor: separation of an active fragment following dissociation by salts or detergents.  Thromb Diath Haemorrh. 1972;  27 502-515
  • 41 Ginsburg D, Handin R I, Bonthron D T et al.. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization.  Science. 1985;  228 1401-1406
  • 42 Lynch D C, Zimmerman T S, Collins C J et al.. Molecular cloning of cDNA for human von Willebrand factor: authentication by a new method.  Cell. 1985;  41 49-56
  • 43 Sadler J E, Shelton-Inloes B B, Sorace J M, Harlan J M, Titani K, Davie E W. Cloning and characterization of two cDNAs coding for human von Willebrand factor.  Proc Natl Acad Sci U S A. 1985;  82 6394-6398
  • 44 Federici A B, Castaman G, Mannucci P M. Italian Association of Hemophilia Centers (AICE) . Guidelines for the diagnosis and management of von Willebrand disease in Italy.  Haemophilia. 2002;  8 607-621
  • 45 Favaloro E J. Laboratory identification of von Willebrand disease: technical and scientific perspectives.  Semin Thromb Hemost. 2006;  32 456-471
  • 46 Favaloro E J. An update on the von Willebrand factor collagen binding (VWF:CB) assay: 21 years of age and beyond adolescence, but not yet a mature adult.  Semin Thromb Hemost. 2007;  33 727-744
  • 47 Howard M A, Firkin B G. Ristocetin - a new tool in the investigation of platelet aggregation.  Thromb Diath Haemorrh. 1971;  26 362-369
  • 48 Weiss H J, Hoyer L W, Rickles F R, Varma A, Rogers J. Quantitative assay of a plasma factor deficient in von Willebrand's disease that is necessary for platelet aggregation. Relationship to factor VIII procoagulant activity and antigen content.  J Clin Invest. 1973;  52 2708-2716
  • 49 Favaloro E J, Bonar R, Marsden K. (on behalf of the RCPA QAP Haemostasis Committee). Lower limit of assay sensitivity: an under-recognised and significant problem in von Willebrand disease identification and classification.  Clin Lab Sci. 2008;  21 178-185
  • 50 Favaloro E J, Bonar R, Meiring M, Street A, Marsden K. (on behalf of the RCPA QAP in Haematology). 2B or not 2B? Disparate discrimination of functional VWF discordance using different assay panels or methodologies may lead to success or failure in the early identification of type 2B VWD.  Thromb Haemost. 2007;  98 346-358
  • 51 Kempfer A C, Silaf M R, Farias C E et al.. Binding of von Willebrand factor to collagen by flow cytometry.  Am J Clin Pathol. 1999;  111 418-423
  • 52 Chen D, Daigh C A, Hendricksen J I et al.. A highly sensitive plasma von Willebrand factor ristocetin cofactor (VWF:RCo) activity assay by flow cytometry.  J Thromb Haemost. 2008;  6 323-330
  • 53 Giannini S, Mezzasoma A M, Leone M, Gresele P. Laboratory diagnosis and monitoring of desmopressin treatment of von Willebrand's disease by flow cytometry.  Haematologica. 2007;  92 1647-1654
  • 54 Blombäck B. Fibrinogen: evolution of the structure-function concept. Keynote address at Fibrinogen 2000 Congress.  Ann N Y Acad Sci. 2001;  936 1-10
  • 55 Schmidt A. Neue Untersuchungen ueber die Fasserstoffesgerinnung.  Pflueger's Arch F Ges Physiol. 1872;  6 413-538
  • 56 Monroe D M, Hoffman M, Roberts H R. Fathers of modern coagulation.  Thromb Haemost. 2007;  98 3-5
  • 57 MacFarlane R G. An enzyme cascade in the blood clotting mechanism and its function as a biochemical amplifier.  Nature. 1964;  202 498-499
  • 58 Davie E W, Ratnoff O D. Waterfall sequence for intrinsic blood clotting.  Science. 1964;  145 1310-1312
  • 59 Mann K G. Biochemistry and physiology of blood coagulation.  Thromb Haemost. 1999;  82 165-174
  • 60 Hemker H C. The initiation phase - a review of old (clotting-) times.  Thromb Haemost. 2007;  98 20-23
  • 61 Lippi G, Franchini M, Guidi G C. Diagnostic approach to inherited bleeding disorders.  Clin Chem Lab Med. 2007;  45 2-12
  • 62 McVey J H. Tissue factor pathway.  Baillieres Best Pract Res Clin Haematol. 1999;  12 361-372
  • 63 Mackman N, Tilley R E, Key N S. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis.  Arterioscler Thromb Vasc Biol. 2007;  27 1687-1693
  • 64 Koller F, Loeliger A, Duckert F. Experiments on a new clotting factor (factor VII).  Acta Haematol. 1951;  6 1-18
  • 65 Eigenbrot C. Structure, function, and activation of coagulation factor VII.  Curr Protein Pept Sci. 2002;  3 287-299
  • 66 Franchini M, Veneri D, Lippi G. The potential role of recombinant activated FVII in the management of critical hemato-oncological bleeding: a systematic review.  Bone Marrow Transplant. 2007;  39 729-735
  • 67 Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects.  Arterioscler Thromb Vasc Biol. 2002;  22 539-548
  • 68 Römisch J. Factor VII activating protease (FSAP): a novel protease in hemostasis.  Biol Chem. 2002;  383 1119-1124
  • 69 Lisman T, De Groot P G. Mechanism of action of recombinant factor VIIa.  J Thromb Haemost. 2003;  1 1138-1139
  • 70 Middeldorp S, Levi M. Thrombophilia: an update.  Semin Thromb Hemost. 2007;  33 563-572
  • 71 Mahmoodi B K, Brouwer J L, Veeger N J, van der Meer J. Hereditary deficiency of protein C or protein S confers increased risk of arterial thromboembolic events at a young age. Results from a large family cohort study.  Circulation. 2008;  118 1659-1667
  • 72 Prandoni P, Bilora F, Marchiori A et al.. An association between atherosclerosis and venous thrombosis.  N Engl J Med. 2003;  348 1435-1441
  • 73 Boekholdt S M, Kramer M H. Arterial thrombosis and the role of thrombophilia.  Semin Thromb Hemost. 2007;  33 588-596
  • 74 Sorensen H T, Horvath-Puho E, Pedersen L, Baron J A, Prandoni P. Venous thromboembolism and subsequent hospitalisation due to acute arterial cardiovascular events: a 20-year cohort study.  Lancet. 2007;  370 1773-1779
  • 75 Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen P W. Cardiovascular risk factors and venous thromboembolism: a meta-analysis.  Circulation. 2008;  117 93-102
  • 76 Egeberg O. Inherited antithrombin deficiency causing thrombophilia.  Thromb Diath Haemorrh. 1965;  13 516-530
  • 77 Nicolaides A N, Breddin H K, Carpenter P The European Genetics Foundation et al.. Thrombophilia and venous thromboembolism. International consensus statement. Guidelines according to scientific evidence.  Int Angiol. 2005;  24 1-26
  • 78 van Boven H H, Vandenbroucke J P, Briët E, Rosendaal F R. Gene-gene and gene-environment interactions determine risk of thrombosis in families with inherited antithrombin deficiency.  Blood. 1999;  94 2590-2594
  • 79 Cohn D M, Roshani S, Middeldorp S. Thrombophilia and venous thromboembolism: implications for testing.  Semin Thromb Hemost. 2007;  33 573-581
  • 80 Marcum J A. The origin of the dispute over the discovery of heparin.  J Hist Med Allied Sci. 2000;  55 37-66
  • 81 Fareed J, Hoppensteadt D A, Fareed D et al.. Survival of heparins, oral anticoagulants, and aspirin after the year 2010.  Semin Thromb Hemost. 2008;  34 58-73
  • 82 Howell W H, Holt E. Two new factors in blood coagulation – heparin and pro-antithrombin.  Am J Physiol. 1918;  47 328-341
  • 83 Wardrop D, Keeling D. The story of the discovery of heparin and warfarin.  Br J Haematol. 2008;  141 757-763
  • 84 Fareed J, Leong W L, Hoppensteadt D A et al.. Generic low-molecular-weight heparins: some practical considerations.  Semin Thromb Hemost. 2004;  30 703-713
  • 85 Spinler S A, Wittkowsky A K, Nutescu E A, Smythe M A. Anticoagulation monitoring part 2: unfractionated heparin and low-molecular-weight heparin.  Ann Pharmacother. 2005;  39 1275-1285
  • 86 Bianchini P, Liverani L, Spelta F, Mascellani G, Parma B. Variability of heparins and heterogeneity of low molecular weight heparins.  Semin Thromb Hemost. 2007;  33 496-502
  • 87 Esmon C T. The protein C pathway.  Chest. 2003;  124(3, Suppl) 26S-32S
  • 88 Griffin J H, Evatt B, Zimmerman T S, Kleiss A J, Wideman C. Deficiency of protein C in congenital thrombotic disease.  J Clin Invest. 1981;  68 1370-1373
  • 89 Nizzi Jr F A, Kaplan H S. Protein C and S deficiency.  Semin Thromb Hemost. 1999;  25 265-272
  • 90 Martí-Carvajal A, Salanti G, Cardona A F. Human recombinant activated protein C for severe sepsis.  Cochrane Database Syst Rev. 2008;  (1) CD004388
  • 91 Di Scipio R G, Hermodson M A, Yates S G, Davie E W. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S.  Biochemistry. 1977;  16 698-706
  • 92 Walker F J. Regulation of activated protein C by a new protein. A possible function for bovine protein S.  J Biol Chem. 1980;  255 5521-5524
  • 93 García de Frutos P, Fuentes-Prior P, Hurtado B, Sala N. Molecular basis of protein S deficiency.  Thromb Haemost. 2007;  98 543-556
  • 94 Comp P C, Esmon C. Recurrent venous thromboembolism in patients with a partial deficiency of protein S.  N Engl J Med. 1984;  311 1525-1528
  • 95 Goodwin A J, Rosendaal F R, Kottke-Marchant K, Bovill E G. A review of the technical, diagnostic, and epidemiologic considerations for protein S assays.  Arch Pathol Lab Med. 2002;  126 1349-1366
  • 96 Bertina R M, Koeleman B P, Koster T et al.. Mutation in blood coagulation factor V associated with resistance to activated protein C.  Nature. 1994;  369 64-67
  • 97 Dahlbäck B, Carlsson M, Svensson P J. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C.  Proc Natl Acad Sci U S A. 1993;  90 1004-1008
  • 98 Koster T, Rosendaal F R, de Ronde H, Briët E, Vandenbroucke J P, Bertina R M. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study.  Lancet. 1993;  342 1503-1506
  • 99 Svensson P J, Dahlbäck B. Resistance to activated protein C as a basis for venous thrombosis.  N Engl J Med. 1994;  330 517-522
  • 100 Bauduer F, Lacombe D, Factor V. Leiden, prothrombin 20210A, methylenetetrahydrofolate reductase 677T, and population genetics.  Mol Genet Metab. 2005;  86 91-99
  • 101 Rosendorff A, Dorfman D M. Activated protein C resistance and factor V Leiden: a review.  Arch Pathol Lab Med. 2007;  131 866-871
  • 102 Norstrøm E, Thorelli E, Dahlbäck B. Functional characterization of recombinant FV Hong Kong and FV Cambridge.  Blood. 2002;  100 524-530
  • 103 Steen M, Norstrom E A, Tholander A L et al.. Functional characterization of factor V–Ile359Thr: a novel mutation associated with thrombosis.  Blood. 2004;  103 3381-3387
  • 104 Lunghi B, Iacoviello L, Gemmati D et al.. Detection of new polymorphic markers in the factor V gene: association with factor V levels in plasma.  Thromb Haemost. 1996;  75 45-48
  • 105 Castaman G, Faioni E M, Tosetto A, Bernardi F. The factor V HR2 haplotype and the risk of venous thrombosis: a meta-analysis.  Haematologica. 2003;  88 1182-1189
  • 106 Tormene D, Fortuna S, Tognin G et al.. The incidence of venous thromboembolism in carriers of antithrombin, protein C or protein S deficiency associated with the HR2 haplotype of factor V: a family cohort study.  J Thromb Haemost. 2005;  3 1414-1420
  • 107 Varga E A, Kerlin B A, Wurster M W. Social and ethical controversies in thrombophilia testing and update on genetic risk factors for venous thromboembolism.  Semin Thromb Hemost. 2008;  34 549-561
  • 108 Hertzberg M, Neville S, Favaloro E J, MacDonald D. External quality assurance of DNA testing for thrombophilia mutations.  Am J Clin Pathol. 2005;  123 189-193
  • 109 Favaloro E J. Diagnostic issues in thrombophilia: a laboratory scientist's view.  Semin Thromb Hemost. 2005;  31 11-16
  • 110 Favaloro E J, Bonar R, Sioufi J on behalf of the RCPA QAP in Haematology et al. Multi-laboratory testing of thrombophilia: current and past practice in Australasia as assessed through the Royal College of Pathologists of Australasia Quality Assurance Program in Haematology.  Semin Thromb Hemost. 2005;  31 49-58
  • 111 Reitsma P H, Rosendaal F R. Past and future of genetic research in thrombosis.  J Thromb Haemost. 2007;  5(Suppl 1) 264-269
  • 112 Bernardi E, Pesavento R, Prandoni P. Upper extremity deep venous thrombosis.  Semin Thromb Hemost. 2006;  32 729-736

Prof. Giuseppe LippiM.D. 

Sezione di Chimica Clinica, Dipartimento di Scienze Morfologico-Biomediche, Università degli Studi di Verona

Ospedale Policlinico G.B. Rossi, Piazzale Scuro, 10 37134 Verona, Italy

Email: giuseppe.lippi@univr.it

    >