Exp Clin Endocrinol Diabetes 2009; 117(9): 449-454
DOI: 10.1055/s-0028-1112153
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Impact of 4-Methylbenzylidene-camphor (4-MBC) during Embryonic and Fetal Development in the Neuroendocrine Regulation of Testicular Axis in Prepubertal and Peripubertal Male Rats

M.E. Carou 1 , B. Szwarcfarb 1 , M.L. Deguiz 1 , R. Reynoso 1 , S. Carbone 1 , J. A. Moguilevsky 2 , P. Scacchi 1 , O. J. Ponzo 1
  • 1Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
  • 2Universidad Favaloro, Buenos Aires, Argentina
Further Information

Publication History

received 29.01.2008 first decision 20.08.2008

accepted 05.12.2008

Publication Date:
26 February 2009 (online)

Abstract

4-Methylbenzylidene-camphor (4-MBC), an UV-B ray filter, belongs to the endocrine disrupters involved with alterations in the reproductive axis. Our target was to study the effect of 4-MBC on the neuroendocrine parameters that regulate reproduction in prepubertal and peripubertal male rats, which received this disrupter during embryonic and fetal development. 4-MBC was administered (sc) to female rats since pregnancy onset in doses of 20, 100 and 500 mg/kg/day. The litters were sacrificed at 15 or 30 days old to determine testicular weight, gonadotropin and prolactin serum levels and also GnRH and amino acids release from the hypothalamus. The exposure to 20 mg/kg/day only increased the LH serum levels in 30-day-old males. Doses of 100 and 500 mg/kg/day caused a decrease in testicular weight and in LH, GnRH and glutamate levels, in prepubertal rats (15-day-old specimens), and an increase in, gonadotropin (LH and FSH) concentration and aspartate levels in peripubertal rats (30-day-old specimens), without changes in testicular weight. Prolactinaemia remained unaltered in all groups. Results obtained show that the administration of high doses of 4-MBC during embryonic and fetal stage inhibits the testicular axis in male rats during the prepubertal stage and stimulates it during peripubertad stage. On the other hand in the case of low doses no significant effects were observed.

References

  • 1 Brann DW, Mahesh VB. Excitatory amino acid regulation of gonadotrophin secretion: modulation by steroid hormone.  J Steroid Biochem Mol Biol. 1992;  41 847-850
  • 2 Clarkson J, Herbison AE. Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty.  Mol Cell Endocrinol. 2006;  254–255 32-38
  • 3 Dellovade TL, Young M, Ross EP. et al . Disruption of the gene encoding SF-1 alters the distribution of hypothalamic neuronal phenotypes.  J Comp Neurol. 2000;  423 579-589
  • 4 Dong Q, Bergendahl M, Huhtaniemi I. et al . Effect of undernutrition on pulsatile luteinizing hormone (LH) secretion in castrate and intact male rats using an ultrasensitive immunofluorometric LH assay.  Endocrinology. 1994;  135 745-750
  • 5 Durrer S, Maerkel K, Schlumpf M. et al . Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the UV filter 4-methylbenzylidene camphor.  Endocrinology. 2005;  146 2130-2139
  • 6 Feleder C, Jarry H, Leonhardt S. et al . The GABAergic control of Gonadotropin-releasing hormone secretion in male rats during sexual maturation involves effects n hypothalamic excitatory and inhibitory amino acids systems.  Neuroendocrinology. 1996;  64 305-312
  • 7 Hayden CG, Roberts MS, Benson HA. Systemic absorption of sunscreen after topical application.  Lancet. 1997;  350 863-864
  • 8 Herbison AE. Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons.  Endocr Rev. 1998;  19 302-330
  • 9 Hrabovszky E, Steinhauser A, Barabas K. et al . Estrogen receptor beta-immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain.  Endocrinology. 2001;  142 3261-3264
  • 10 Janjua NR, Mogensen B, Andersson AM. et al . Systemic absorption of the sunscreens Benzophenone-3, Octyl-methoxycinnamate, and 3-(4-Methyl-Benzylidene) Camphor after whole-body topical application and reproductive hormone levels in humans.  J Invest Dermatology. 2004;  123 57-61
  • 11 Jarry H, Hirsch B, Leonhardt S. et al . Amino acid neurotransmitter release in the preoptic area of rats during the positive feedback actions of estradiol on LH release.  Neuroendocrinology. 1992;  56 133-140
  • 12 Judd SJ, Rakoff JS, Yen SSC. Inhibition of gonadotropin and prolactin realease by dopamine: effect of endogenous estradiol levels.  J Clin Endocrinol Metab. 1978;  47 494-498
  • 13 Kaji H, Saito S, Shitsukawa K. et al . The endogenous feeding suppressant, 2-buten-4-olide, impairs the pulsatile secretion of luteinizing hormone through endogenous opioid peptides.  Eur J Endocrinol. 1998;  138 198-205
  • 14 Klann A, Levy G, Lutz I. et al . Estrogen-like effects of ultraviolet screen 3-(4-methylbenzylidene)-Camphor (Eusolex 6300) on cell proliferation and gene induction in mammalian and amphibian cells.  Environ Res. 2005;  97 274-281
  • 15 Maerkel K, Durrer S, Henseler M. et al . Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: Developmental exposure of rats to 4-Methylbenzylidene camphor.  Toxicol Appl Pharmacol. 2007;  218 152-165
  • 16 Moguilevsky JA, Carbone S, Szwarcfarb B. et al . Hypothalamic excitatory aminoacid system during sexual maturation in female rats.  J Steroid Biochemistry Mol Biol. 1995;  53 337-351
  • 17 Moguilevsky JA, Wuttke W. Changes in the control of gonadotropin secretion by neurotransmitters during sexual development in rats.  Exp Clin Endocrinol Diabetes. 2001;  109 188-195
  • 18 Mooradian AD, Morley JE, Korenman SG. Biological actions of Androgens.  Endocr Rev. 1987;  8 1-28
  • 19 Mueller SO, Kling M, Arifin Firzani P. et al . Activation of estrogen receptor alphafa and beta by 4-MBC in human and rat cells: comparison with phyto-and xenoestrogens.  Toxicol Lett. 2003;  142 89-101
  • 20 Ojeda SR, MacCann SM. Development of dopaminergic and estrogenic control of prolactin release in the female rat.  Endocrinology. 1974;  95 1499-1505
  • 21 Otero Losada M, Carbone S, Szwarcfarb B. et al . Amino acid levels in the hypothalamus and response to N-methyl-D-aspartate and/ordizocilpine administration during sexual maturation in female rats.  Neuroendocrinology. 1993;  57 960-964
  • 22 Poiger T, Buser HR, Balmer ME. et al . Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes.  Chemosphere. 2004;  55 951-963
  • 23 Ramos JG, Varayoud J, Kass L. et al . Bisphenol A induces both transient and permanent histofunctional alterations of the hypothalamic-pituitary-gonadal axis in prenatally exposed male rats.  Endocrinology. 2003;  144 3206-3215
  • 24 Rochira V, Zirilli L, Genazzani AD. et al . Hypothalamic-pituitary-gonadal axis in two men with aromatase deficiency: evidence that circulating estrogens are required at the hypothalamic level for the integrity of gonadotropin negative feedback.  Eur J Endocrinol. 2006;  155 513-522
  • 25 Roy D, Angelini NL, Belsham DD. Estrogen directly respresses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-alpha (ER-alpha)- and ER beta-expressing GT1-7 GnRH neurons.  Endocrinology. 1999;  140 5045-5053
  • 26 Schauer UMD, Volkel W, Heusener A. et al . Kinetics of 3-(4-methylbenzylidene) camphor in rats and humans alter termal application.  Toxicol Appl Pharmacol. 2006;  216 339-346
  • 27 Schlumpf M, Cotton B, Conscience M. et al . In vitro and in vivo estrogenicity of UV screens.  Environ Health Perspect. 2001;  109 239-244
  • 28 Schlumpf M, Schmid P, Durrer S. et al . Endocrine activity and developmental toxicity of cosmetic UV filtres- and update.  Toxicology. 2004;  205 113-122
  • 29 Schlumpf M, Jarry H, Wuttke W. et al . Estrogenic activity and estrogen receptor B binding of the UV filter 3-benzylidene camphor. Comparison with 4-methylbenzylidene camphor.  Toxicology. 2004;  199 109-120
  • 30 Schmutzler C, Hamann I, Hofmann PJ. et al . Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney.  Toxicology. 2004;  205 95-102
  • 31 Seidlová-Wuttke D, Christoffel J, Rimoldi G. et al . Comparison of effects of estradiol with those of octylmethoxycinnamate (OMC) and 4-Methylbenzylidene Camphor (4-MBC) on fat tissue, lipids and pituitary hormones.  Toxicol Appl Pharmacol. 2005;  214 1-7
  • 32 Seidlová-Wuttke D, Jarry H, Christoffel J. et al . Comparison of effects of estradiol (E2) with those of octylmethoxycinnamate (OMC) and 4-Methylbenzylidene Camphor (4-MBC) - 2 filters of UV light - on several uterine, vaginal and bone parameters.  Toxicol Appl Pharmacol. 2006;  210 246-254
  • 33 Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor -alpha and –beta mRNA in the rat central nervous system.  J Comp Neurol. 1997;  388 507-525
  • 34 Tinwell H, Lefevre PA, Moffat GJ. et al . Confirmation of uterotrophic activity of 3(4-methylbenzylidene) camphor in the immature rat.  Environ Health Perspect. 2002;  110 533-536
  • 35 Vaillant C, Chesnel F, Schausi D. et al . Expression of estrogen receptor subtypes in rat pituitary gland during pregnancy and lactation.  Endocrinology. 2002;  143 4249-4258
  • 36 Volkel W, Colnot T, Schauer UMD. et al . Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration.  Toxicol Appl Pharmacol. 2006;  216 331-338
  • 37 Yen SS, Ehara Y, Siler TM. Augmentation of prolactin secretion by estrogen in hypogonadal women.  J Clin Invest. 1974;  53 652-655

Correspondence

O. J. Ponzo

Laboratorio de Endocrinología

Departamento de Fisiología

Facultad de Medicina

Universidad de Buenos Aires

Paraguay 2155. Piso 7°

CP 1113

Buenos Aires

Argentina

Phone: +54/11/5950 95 00 (int 2146)

Email: oponzo@fmed.uba.ar

    >