Skip to main content
Log in

The Enzymatic Basis of Drug-Drug Interactions with Systemic Triazole Antifungals

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Drug-drug interactions are a recurring problem in immunocompromised patients treated with triazole antifungals. While the introduction of new antifungals has expanded opportunities for lowering drug toxicity, virtually all antifungal regimens carry the risk of pharmacokinetic and pharmacodynamic interaction. This review presents the published data on molecular determinants (enzymes, transporters, orphan nuclear receptors) of systemic triazole pharmacokinetics in humans, including itraconazole, fluconazole, voriconazole and posaconazole. Systemic triazoles are inhibitors of cytochrome P450 (CYP) isozymes, such as CYP3A4, CYP2C9 and CYP2C19, to varying degrees. In addition, some are substrates and/or inhibitors of drug transporters such as multidrug resistance-1 gene product, P-glycoprotein, or breast cancer resistance protein. The interactions of triazole antifungals can be divided into the following categories: modifications of antifungal pharmacokinetics by other drugs, modifications of other drug pharmacokinetics by antifungals, and two-way interactions. These features are the basis of most interactions that occur during triazole therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII

Similar content being viewed by others

References

  1. Hoffman HL, Ernst EJ, Klepser ME. Novel triazole antifungal agents. Expert Opin Investig Drugs 2000 Mar; 9(3): 593–605

    Article  PubMed  CAS  Google Scholar 

  2. Koltin Y, Hitchcock CA. The search for new triazole antifungal agents. Curr Opin Chem Biol 1997 Aug; 1(2): 176–82

    Article  PubMed  CAS  Google Scholar 

  3. Sabatelli F, Patel R, Mann PA, et al. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother 2006 Jun; 50(6): 2009–15

    Article  PubMed  CAS  Google Scholar 

  4. Herbrecht R, Nivoix Y, Fohrer C, et al. Management of systemic fungal infections: alternatives to itraconazole. J Antimicrob Chemother 2005 Sep; 56 Suppl. 1: i39–48

    Article  PubMed  CAS  Google Scholar 

  5. Kontoyiannis DP, Lionakis MS, Lewis RE, et al. Zygomycosis in a tertiary-care cancer center in the era of Aspergillus-active antifungal therapy: a case-control observational study of 27 recent cases. J Infect Dis 2005 Apr; 191(8): 1350–60

    Article  PubMed  Google Scholar 

  6. Siwek GT, Dodgson KJ, Magalhaes-Silverman M, et al. Invasive zygomycosis in hematopoietic stem cell transplant recipients receiving voriconazole prophylaxis. Clin Infect Dis 2004 Aug; 39(4): 584–7

    Article  PubMed  Google Scholar 

  7. Imhof A, Balajee SA, Fredricks DN, et al. Breakthrough fungal infections in stem cell transplant recipients receiving voriconazole. Clin Infect Dis 2004 Sep; 39(5): 743–6

    Article  PubMed  Google Scholar 

  8. Poirier JM, Cheymol G. Optimisation of itraconazole therapy using target drug concentrations. Clin Pharmacokinet 1998 Dec; 35(6): 461–73

    Article  PubMed  CAS  Google Scholar 

  9. Krieter P, Flannery B, Musick T, et al. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother 2004 Sep; 48(9): 3543–51

    Article  PubMed  CAS  Google Scholar 

  10. Roffey SJ, Cole S, Comby P, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos 2003 Jun; 31(6): 731–41

    Article  PubMed  CAS  Google Scholar 

  11. Debruyne D, Ryckelynck JP. Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet 1993 Jan; 24(1): 10–27

    Article  PubMed  CAS  Google Scholar 

  12. Black DJ, Kunze KL, Wienkers LC, et al. Warfarin-fluconazole: II. A metabolically based drug interaction - in vivo studies. Drug Metab Dispos 1996 Apr; 24(4): 422–8

    PubMed  CAS  Google Scholar 

  13. Kunze KL, Eddy AC, Gibaldi M, et al. Metabolic enantiomeric interactions: the inhibition of human (S)-warfarin-7-hydroxylase by (R)-warfarin. Chirality 1991; 3(1): 24–9

    Article  PubMed  CAS  Google Scholar 

  14. Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 2005 Sep; 28(9): 1805–8

    Article  PubMed  CAS  Google Scholar 

  15. Sakaeda T, Iwaki K, Kakumoto M, et al. Effect of micafungin on cytochrome P450 3A4 and multidrug resistance protein 1 activities, and its comparison with azole antifungal drugs. J Pharm Pharmacol 2005 Jun; 57(6): 759–64

    Article  PubMed  CAS  Google Scholar 

  16. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995 Jul; 13(3): 129–34

    Article  PubMed  CAS  Google Scholar 

  17. Eytan GD, Regev R, Assaraf YG. Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. J Biol Chem 1996 Feb; 271(6): 3172–8

    Article  PubMed  CAS  Google Scholar 

  18. Ferte J. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur J Biochem 2000 Jan; 267(2): 277–94

    Article  PubMed  CAS  Google Scholar 

  19. Wang EJ, Lew K, Casciano CN, et al. Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother 2002 Jan; 46(1): 160–5

    Article  PubMed  CAS  Google Scholar 

  20. Gupta A, Unadkat JD, Mao Q. Interactions of azole antifungal agents with the human breast cancer resistance protein (BCRP). J Pharm Sci 2007 Dec; 96(12): 3226–35

    Article  PubMed  CAS  Google Scholar 

  21. Heykants J, Van Peer A, Van de Velde V, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses 1989; 32 Suppl.: 167–87

    Google Scholar 

  22. Debruyne D. Clinical pharmacokinetics of fluconazole in superficial and systemic mycoses. Clin Pharmacokinet 1997 Jul; 33(1): 52–77

    Article  PubMed  CAS  Google Scholar 

  23. Levêque D, Nivoix Y, Jehl F, et al. Clinical pharmacokinetics of voriconazole. Int J Antimicrob Agents 2006 Apr; 27(4): 274–84

    Article  PubMed  CAS  Google Scholar 

  24. Courtney R, Pai S, Laughlin M, et al. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother 2003 Sep; 47(9): 2788–95

    Article  PubMed  CAS  Google Scholar 

  25. Lazarus HM, Blumer JL, Yanovich S, et al. Safety and pharmacokinetics of oral voriconazole in patients at risk of fungal infection: a dose escalation study. J Clin Pharmacol 2002 Apr; 42(4): 395–402

    Article  PubMed  CAS  Google Scholar 

  26. Schafer-Korting M. Pharmacokinetic optimisation of oral antifungal therapy. Clin Pharmacokinet 1993 Oct; 25(4): 329–41

    Article  PubMed  CAS  Google Scholar 

  27. Slain D, Rogers PD, Cleary JD, et al. Intravenous itraconazole. Ann Pharmacother 2001 Jun; 35(6): 720–9

    Article  PubMed  CAS  Google Scholar 

  28. Van de Velde VJ, Van Peer AP, Heykants JJ, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy 1996 May; 16(3): 424–8

    PubMed  Google Scholar 

  29. Welage LS, Carver PL, Revankar S, et al. Alterations in gastric acidity in patients infected with human immunodeficiency virus. Clin Infect Dis 1995 Dec; 21(6): 1431–8

    Article  PubMed  CAS  Google Scholar 

  30. Smith D, van de Velde V, Woestenborghs R, et al. The pharmacokinetics of oral itraconazole in AIDS patients. J Pharm Pharmacol 1992 Jul; 44(7): 618–9

    Article  PubMed  CAS  Google Scholar 

  31. Johnson MD, Hamilton CD, Drew RH, et al. A randomized comparative study to determine the effect of omeprazole on the peak serum concentration of itraconazole oral solution. J Antimicrob Chemother 2003 Feb; 51(2): 453–7

    Article  PubMed  CAS  Google Scholar 

  32. Purkins L, Wood N, Ghahramani P, et al. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother 2002 Aug; 46(8): 2546–53

    Article  PubMed  CAS  Google Scholar 

  33. Purkins L, Wood N, Kleinermans D, et al. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole. Br J Clin Pharmacol 2003 Dec; 56 Suppl.: 117–23

    Google Scholar 

  34. Purkins L, Wood N, Kleinermans D, et al. Histamine H2-receptor antagonists have no clinically significant effect on the steady-state pharmacokinetics of voriconazole. Br J Clin Pharmacol 2003 Dec; 56 Suppl.: 151–5

    Google Scholar 

  35. Courtney R, Wexler D, Radwanski E, et al. Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol 2004 Feb; 57(2): 218–22

    Article  PubMed  Google Scholar 

  36. Courtney R, Radwanski E, Lim J, et al. Pharmacokinetics of posaconazole coadministered with antacid in fasting or nonfasting healthy men. Antimicrob Agents Chemother 2004 Mar; 48(3): 804–8

    Article  PubMed  CAS  Google Scholar 

  37. Pearson MM, Rogers PD, Cleary JD, et al. Voriconazole: a new triazole antifungal agent. Ann Pharmacother 2003 Mar; 37(3): 420–32

    Article  PubMed  CAS  Google Scholar 

  38. Schwartz S, Thiel E. CNS-aspergillosis: are there new treatment options? Mycoses 2003; 46 Suppl.: 28–14

    Google Scholar 

  39. Black KE, Baden LR. Fungal infections of the CNS: treatment strategies for the immunocompromised patient. CNS Drugs 2007; 21(4): 293–318

    Article  PubMed  CAS  Google Scholar 

  40. Hulsewede JW, Dermoumi H, Ansorg R. Determination of itraconazole and hydroxy-itraconazole in sera using high-performance-liquid-chromatography and a bioassay. Zentralbl Bakteriol 1995 Oct; 282(4): 457–64

    Article  PubMed  CAS  Google Scholar 

  41. Templeton IE, Thummel KE, Kharasch ED, et al. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther 2008 Jan; 83(1): 77–85

    Article  PubMed  CAS  Google Scholar 

  42. Barone JA, Koh JG, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 1993 Apr; 37(4): 778–84

    Article  PubMed  CAS  Google Scholar 

  43. Isoherranen N, Kunze KL, Allen KE, et al. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos 2004 Oct; 32(10): 1121–31

    Article  PubMed  CAS  Google Scholar 

  44. Brammer KW, Coakley AJ, Jezequel SG, et al. The disposition and metabolism of [14C]fluconazole in humans. Drug Metab Dispos 1991 Jul; 19(4): 764–7

    PubMed  CAS  Google Scholar 

  45. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos 2003 May; 31(5): 540–7

    Article  PubMed  CAS  Google Scholar 

  46. Ikeda Y, Umemura K, Kondo K, et al. Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther 2004 Jun; 75(6): 587–8

    Article  PubMed  CAS  Google Scholar 

  47. Wexler D, Courtney R, Richards W, et al. Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur J Pharm Sci 2004 Apr; 21(5): 645–53

    Article  PubMed  CAS  Google Scholar 

  48. US FDA Center for Drug Evaluation and Research. Drug development and drug interactions [online]. Available from URL: http://www.fda.gov/cder/drug/drugInteractions/default.htm [Accessed 2008 Oct 12]

  49. Banerjee R, Leaver N, Lyster H, et al. Coadministration of itraconazole and tacrolimus after thoracic organ transplantation. Transplant Proc 2001 Feb; 33(1–2): 1600–2

    Article  PubMed  CAS  Google Scholar 

  50. Kwan JT, Foxall PJ, Davidson DG, et al. Interaction of cyclosporin and itraconazole. Lancet 1987 Aug; 2(8553): 282

    Article  PubMed  CAS  Google Scholar 

  51. Ducharme MP, Slaughter RL, Warbasse LH, et al. Itraconazole and hydroxyitraconazole serum concentrations are reduced more than tenfold by phenytoin. Clin Pharmacol Ther 1995 Dec; 58(6): 617–24

    Article  PubMed  CAS  Google Scholar 

  52. Ahonen J, Olkkola KT, Neuvonen PJ. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur J Clin Pharmacol 1997; 51(5): 415–9

    Article  PubMed  CAS  Google Scholar 

  53. Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996 Mar; 82(3): 511–6

    PubMed  CAS  Google Scholar 

  54. Gubbins PO, McConnell SA, Amsden JR. Antifungal agents. In: Piscitelli SC, Rodvold KA, editors. Drug interactions in infectious diseases. 2nd ed. Totowa (NJ): Humana Press, 2005: 289–337

    Chapter  Google Scholar 

  55. Kiang TK, Ensom MH, Chang TK. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 2005 Apr; 106(1): 97–132

    Article  PubMed  CAS  Google Scholar 

  56. Sahai J, Gallicano K, Pakuts A, et al. Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 1994 May; 169(5): 1103–7

    Article  PubMed  CAS  Google Scholar 

  57. Ghosal A, Hapangama N, Yuan Y, et al. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos 2004 Feb; 32(2): 267–71

    Article  PubMed  CAS  Google Scholar 

  58. Krishna G, Sansone-Parsons A, Kantesaria B. Drug interaction assessment following concomitant administration of posaconazole and phenytoin in healthy men. Curr Med Res Opin 2007 Jun; 23(6): 1415–22

    Article  PubMed  CAS  Google Scholar 

  59. Gubbins PO. Mould-active azoles: pharmacokinetics, drug interactions in neutropenic patients. Curr Opin Infect Dis 2007 Dec; 20(6): 579–86

    Article  PubMed  CAS  Google Scholar 

  60. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005 Sep; 78(3): 260–77

    Article  PubMed  CAS  Google Scholar 

  61. Purkins L, Wood N, Kleinermans D, et al. Voriconazole does not affect the steady-state pharmacokinetics of digoxin. Br J Clin Pharmacol 2003 Dec; 56 Suppl.: 145–50

    Google Scholar 

  62. de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992 Nov; 189(1): 551–7

    Article  PubMed  Google Scholar 

  63. Xia CQ, Yang JJ, Gan LS. Breast cancer resistance protein in pharmacokinetics and drug-drug interactions. Expert Opin Drug Metab Toxicol 2005 Dec; 1(4): 595–611

    Article  PubMed  CAS  Google Scholar 

  64. Willson TM, Kliewer SA. PXR, CAR and drug metabolism. Nat Rev Drug Discov 2002 Apr; 1(4): 259–66

    Article  PubMed  CAS  Google Scholar 

  65. Duret C, Daujat-Chavanieu M, Pascussi JM, et al. Ketoconazole and miconazole are antagonists of the human glucocorticoid receptor: consequences on the expression and function of the constitutive androstane receptor and the pregnane X receptor. Mol Pharmacol 2006 Jul; 70(1): 329–39

    PubMed  CAS  Google Scholar 

  66. Ghahramani P, Purkins L, Kleinermans D, et al. Effects of rifampicin and rifabutin on the pharmacokinetics of voriconazole [abstract no. 844]. 40th Annual Meeting of the Infectious Diseases Society of America; 2000 Sep 24–27; Toronto (ON)

    Google Scholar 

  67. Baciewicz AM, Menke JJ, Bokar JA, et al. Fluconazole-warfarin interaction. Ann Pharmacother 1994 Sep; 28(9): 1111

    PubMed  CAS  Google Scholar 

  68. Crussell-Porter LL, Rindone JP, Ford MA, et al. Low-dose fluconazole therapy potentiates the hypoprothrombinemic response of warfarin sodium. Arch Intern Med 1993 Jan; 153(1): 102–4

    Article  PubMed  CAS  Google Scholar 

  69. Gericke KR. Possible interaction between warfarin and fluconazole. Pharmacotherapy 1993 Sep; 13(5): 508–9

    PubMed  CAS  Google Scholar 

  70. Kunze KL, Trager WF. Warfarin-fluconazole: III. A rational approach to management of a metabolically based drug interaction. Drug Metab Dispos 1996 Apr; 24(4): 429–35

    PubMed  CAS  Google Scholar 

  71. Kunze KL, Wienkers LC, Thummel KE, et al. Warfarin-fluconazole: I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole - in vitro studies. Drug Metab Dispos 1996 Apr; 24(4): 414–21

    PubMed  CAS  Google Scholar 

  72. Allison Jr EJ, McKinney TJ, Langenberg JN. Spinal epidural haematoma as a result of warfarin/fluconazole drug interaction. Eur J Emerg Med 2002 Jun; 9(2): 175–7

    Article  PubMed  Google Scholar 

  73. Mootha VV, Schluter ML, Das A. Intraocular hemorrhages due to warfarin fluconazole drug interaction in a patient with presumed Candida endophthalmitis. Arch Ophthalmol 2002 Jan; 120(1): 94–5

    PubMed  Google Scholar 

  74. Purkins L, Wood N, Kleinermans D, et al. Voriconazole potentiates warfarin-induced prothrombin time prolongation. Br J Clin Pharmacol 2003 Dec; 56 Suppl.: 124–9

    Google Scholar 

  75. Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996 Jul; 60(1): 54–61

    Article  PubMed  CAS  Google Scholar 

  76. Damkier P, Hansen LL, Brosen K. Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. Br J Clin Pharmacol 1999 Dec; 48(6): 829–38

    Article  PubMed  CAS  Google Scholar 

  77. Kaukonen KM, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 1997 Nov; 62(5): 510–7

    Article  PubMed  CAS  Google Scholar 

  78. Alderman CP, Jersmann HP. Digoxin-itraconazole interaction. Med J Aust 1993 Dec; 159(11–12): 838–9

    PubMed  CAS  Google Scholar 

  79. Angirasa AK, Koch AZ. P-glycoprotein as the mediator of itraconazole-digoxin interaction. J Am Podiatr Med Assoc 2002 Sep; 92(8): 471–2

    PubMed  Google Scholar 

  80. Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 1997 Dec; 19(6): 609–13

    Article  PubMed  CAS  Google Scholar 

  81. Brockmeyer NH, Tillmann I, Mertins L, et al. Pharmacokinetic interaction of fluconazole and zidovudine in HIV-positive patients. Eur J Med Res 1997 Sep; 2(9): 377–83

    PubMed  CAS  Google Scholar 

  82. Krishna G, Parsons A, Kantesaria B, et al. Evaluation of the pharmacokinetics of posaconazole and rifabutin following co-administration to healthy men. Curr Med Res Opin 2007 Mar; 23(3): 545–52

    Article  PubMed  CAS  Google Scholar 

  83. Purkins L, Wood N, Ghahramani P, et al. Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration. Br J Clin Pharmacol 2003 Dec; 56 Suppl.: 137–44

    Google Scholar 

  84. Blum RA, Wilton JH, Hilligoss DM, et al. Effect of fluconazole on the disposition of phenytoin. Clin Pharmacol Ther 1991 Apr; 49(4): 420–5

    Article  PubMed  CAS  Google Scholar 

  85. Bonay M, Jonville-Bera AP, Diot P, et al. Possible interaction between phenobarbital, carbamazepine and itraconazole. Drug Saf 1993; 9(4): 309–11

    Article  PubMed  CAS  Google Scholar 

  86. Vfend® IV (voriconazone) for injection [US prescribing information; online]. Available from URL: http://www.pfizer.com/files/products/uspi_vfend.pdf [Accessed 2008 Oct 12]

  87. Yeh J, Soo SC, Summerton C, et al. Potentiation of action of warfarin by itraconazole. BMJ 1990 Sep; 301(6753): 669

    Article  PubMed  CAS  Google Scholar 

  88. Saad AH, DePestel DD, Carver PL. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 2006 Dec; 26(12): 1730–44

    Article  PubMed  CAS  Google Scholar 

  89. Wang RW, Kari PH, Lu AY, et al. Biotransformation of lovastatin: IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 1991 Nov; 290(2): 355–61

    Article  PubMed  CAS  Google Scholar 

  90. Hirano M, Maeda K, Matsushima S, et al. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 2005 Sep; 68(3): 800–7

    PubMed  CAS  Google Scholar 

  91. Cooper KJ, Martin PD, Dane AL, et al. Effect of itraconazole on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther 2003 Apr; 73(4): 322–9

    Article  PubMed  CAS  Google Scholar 

  92. Liu P, Foster G, LaBadie RR, et al. Pharmacokinetic interaction between voriconazole and efavirenz at steady state in healthy male subjects. J Clin Pharmacol 2008 Jan; 48(1): 73–84

    Article  PubMed  CAS  Google Scholar 

  93. Ishigam M, Uchiyama M, Kondo T, et al. Inhibition of in vitro metabolism of simvastatin by itraconazole in humans and prediction of in vivo drug-drug interactions. Pharm Res 2001 May; 18(5): 622–31

    Article  PubMed  CAS  Google Scholar 

  94. Ishigami M, Kawabata K, Takasaki W, et al. Drug interaction between simvastatin and itraconazole in male and female rats. Drug Metab Dispos 2001 Jul; 29(7): 1068–72

    PubMed  CAS  Google Scholar 

  95. Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998 Jul; 64(1): 58–65

    Article  PubMed  CAS  Google Scholar 

  96. Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on cerivastatin pharmacokinetics. Eur J Clin Pharmacol 1999 Jan; 54(11): 851–5

    Article  PubMed  CAS  Google Scholar 

  97. Kivisto KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998 Jul; 46(1): 49–53

    Article  PubMed  CAS  Google Scholar 

  98. Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000 Oct; 68(4): 391–400

    Article  PubMed  CAS  Google Scholar 

  99. Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998 Mar; 63(3): 332–41

    Article  PubMed  CAS  Google Scholar 

  100. Backman JT, Kivisto KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998 Mar; 54(1): 53–8

    Article  PubMed  CAS  Google Scholar 

  101. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 May; 55(5): 481–5

    Article  PubMed  CAS  Google Scholar 

  102. Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 1995 Sep; 40(3): 270–2

    PubMed  CAS  Google Scholar 

  103. Neuvonen PJ, Varhe A, Olkkola KT. The effect of ingestion time interval on the interaction between itraconazole and triazolam. Clin Pharmacol Ther 1996 Sep; 60(3): 326–31

    Article  PubMed  CAS  Google Scholar 

  104. Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 Dec; 56 (6 Pt 1): 601–7

    Article  PubMed  CAS  Google Scholar 

  105. Liu P, Foster G, Gandelman K, et al. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother 2007 Oct; 51(10): 3617–26

    Article  PubMed  CAS  Google Scholar 

  106. Chan JD. Pharmacokinetic drug interactions of vinca alkaloids: summary of case reports. Pharmacotherapy 1998 Nov; 18(6): 1304–7

    PubMed  CAS  Google Scholar 

  107. Gillies J, Hung KA, Fitzsimons E, et al. Severe vincristine toxicity in combination with itraconazole. Clin Lab Haematol 1998 Apr; 20(2): 123–4

    Article  PubMed  CAS  Google Scholar 

  108. Sadaba B, Campanero MA, Quetglas EG, et al. Clinical relevance of sirolimus drug interactions in transplant patients. Transplant Proc 2004 Dec; 36(10): 3226–8

    Article  PubMed  CAS  Google Scholar 

  109. Mathis AS, Shah NK, Friedman GS. Combined use of sirolimus and voriconazole in renal transplantation: a report of two cases. Transplant Proc 2004 Nov; 36(9): 2708–9

    Article  PubMed  CAS  Google Scholar 

  110. Marty FM, Lowry CM, Cutler CS, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2006 May; 12(5): 552–9

    Article  PubMed  CAS  Google Scholar 

  111. Glasmacher A, Prentice A, Gorschluter M, et al. Itraconazole prevents invasive fungal infections in neutropenic patients treated for hematologic malignancies: evidence from a meta-analysis of 3,597 patients. J Clin Oncol 2003 Dec; 21(24): 4615–26

    Article  PubMed  CAS  Google Scholar 

  112. Pascual A, Calandra T, Bolay S, et al. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 2008 Jan; 46(2): 201–11

    Article  PubMed  CAS  Google Scholar 

  113. Trifilio S, Pennick G, Pi J, et al. Monitoring plasma voriconazole levels may be necessary to avoid subtherapeutic levels in hematopoietic stem cell transplant recipients. Cancer 2007 Apr; 109(8): 1532–5

    Article  PubMed  CAS  Google Scholar 

  114. Walsh TJ, Raad I, Patterson TF, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis 2007 Jan; 44(1): 2–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Raoul Herbrecht has received grant support from Pfizer and has served as a consultant for Gilead, Pfizer, Schering-Plough, Merck Sharp and Dohme, Astellas and Novartis. The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nivoix, Y., Levêque, D., Herbrecht, R. et al. The Enzymatic Basis of Drug-Drug Interactions with Systemic Triazole Antifungals. Clin Pharmacokinet 47, 779–792 (2008). https://doi.org/10.2165/0003088-200847120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/0003088-200847120-00003

Keywords

Navigation