Skip to main content
Log in

Clinical Pharmacokinetics of Everolimus

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Abstract Everolimus is an immunosuppressive macrolide bearing a stable 2-hydroxy-ethyl chain substitution at position 40 on the sirolimus (rapamycin) structure. Everolimus, which has greater polarity than sirolimus, was developed in an attempt to improve the pharmacokinetic characteristics of sirolimus, particularly to increase its oral bioavailability. Everolimus has a mechanism of action similar to that of sirolimus. It blocks growth-driven transduction signals in the T-cell response to alloantigen and thus acts at a later stage than the calcineurin inhibitors ciclosporin and tacrolimus. Everolimus and ciclosporin show synergism in immunosuppression both in vitro and in vivo and therefore the drugs are intended to be given in combination after solid organ transplantation. The synergistic effect allows a dosage reduction that decreases adverse effects.

For the quantification of the pharmacokinetics of everolimus, nine different assays using high performance liquid chromatography coupled to an electrospray mass spectrometer, and one enzyme-linked immunosorbent assay, have been developed.

Oral everolimus is absorbed rapidly, and reaches peak concentration after 1.3–1.8 hours. Steady state is reached within 7 days, and steady-state peak and trough concentrations, and area under the concentration-time curve (AUC), are proportional to dosage. In adults, everolimus pharmacokinetic characteristics do not differ according to age, weight or sex, but bodyweight-adjusted dosages are necessary in children.

The interindividual pharmacokinetic variability of everolimus can be explained by different activities of the drug efflux pump P-glycoprotein and of metabolism by cytochrome P450 (CYP) 3A4, 3A5 and 2C8. The critical role of the CYP3A4 system for everolimus biotransformation leads to drug-drug interactions with other drugs metabolised by this cytochrome system. In patients with hepatic impairment, the apparent clearance of everolimus is significantly lower than in healthy volunteers, and therefore the dosage of everolimus should be reduced by half in these patients.

The advantage of everolimus seems to be its lower nephrotoxicity in comparison with the standard immunosuppressants ciclosporin and tacrolimus. Observed adverse effects with everolimus include hypertriglyceridaemia, hypercholesterolaemia, opportunistic infections, thrombocytopenia and leucocytopenia.

Because of the variable oral bioavailability and narrow therapeutic index of everolimus, blood concentration monitoring seems to be important. The excellent correlation between steady-state trough concentration and AUC makes the former a simple and reliable index for monitoring everolimus exposure. The target trough concentration of everolimus should range between 3 and 15 µg/L in combination therapy with ciclosporin (trough concentration 100–300 µg/L) and prednisone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Fig. 2

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic: I. taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28: 721–6

    Article  CAS  Google Scholar 

  2. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22.98), a new antifugal antibiotic: II. fermentation, isolation and characterization. J Antibiot (Tokyo) 1975; 28: 727–32

    Article  CAS  Google Scholar 

  3. Calne RY, Kim S, Saaman A, et al. Rapamycin for immunosuppression in organ allografting. Lancet 1989; II: 227

    Article  Google Scholar 

  4. Boehler T, Waiser J, Budde K, et al. The in vivo effect of rapamycin derivative SDZ RAD on lymphocyte proliferation. Transplant Proc 1998; 30: 2195–7

    Article  Google Scholar 

  5. Schuler W, Sedrani R, Cottens S, et al. SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 1997; 64: 36–42

    Article  PubMed  CAS  Google Scholar 

  6. Crowe A, Bruelisauer A, Duerr L, et al. Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos 1999; 27: 627–32

    PubMed  CAS  Google Scholar 

  7. Krönke M, Leonard WJ, Depper JM, et al. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A 1984; 81: 5214–8

    Article  PubMed  Google Scholar 

  8. Bierer BE, Holländer G, Frumann D, et al. Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes and transplantation biology. Curr Opin Immunol 1993; 5: 763–73

    Article  PubMed  CAS  Google Scholar 

  9. Emmel EA, Verweij CL, Durand DB, et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 1989; 246: 1617–20

    Article  PubMed  CAS  Google Scholar 

  10. Dumont FJ, Staruch MJ, Koprak SL, et al. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK506 and rapamycin. J Immunol 1990; 144: 251–8

    PubMed  CAS  Google Scholar 

  11. Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995; 270: 27531–7

    Article  PubMed  CAS  Google Scholar 

  12. Sehgal SN. Rapamune (sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit 1995; 17: 660–5

    Article  PubMed  CAS  Google Scholar 

  13. Abraham RT. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 1998; 10: 330–6

    Article  PubMed  CAS  Google Scholar 

  14. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol 1996; 14: 483–510

    Article  PubMed  CAS  Google Scholar 

  15. Terada N, Lucas JJ, Szepesi A, et al. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun 1992; 186: 1315–21

    Article  PubMed  CAS  Google Scholar 

  16. Kuo CJ, Chung J, Fiorentino DF, et al. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 1992; 358: 70–3

    Article  PubMed  CAS  Google Scholar 

  17. Brazelton T, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 1996; 8: 710–20

    Article  PubMed  CAS  Google Scholar 

  18. Dumont FJ. Everolimus Novartis. Curr Opin Investig Drugs 2001; 2: 1220–34

    PubMed  CAS  Google Scholar 

  19. Sedrani R, Cottens S, Kallen J, et al. Chemical modification of rapamycin: the discovery of SDZ RAD. Transplant Proc 1998; 30: 2192–4

    Article  PubMed  CAS  Google Scholar 

  20. Schuurman H-J, Cottens S, Fuchs S, et al. SDZ RAD, a new rapamycin derivative. Transplantation 1997; 64: 32–5

    Article  PubMed  CAS  Google Scholar 

  21. Schuurman H, Ringers J, Schuler W, et al. Oral efficacy of the macrolide immunosuppressant SDZ RAD and of cyclosporine microemulsion in cynomolgus monkey kidney allotransplantation. Transplantation 2000; 69: 737–42

    Article  PubMed  CAS  Google Scholar 

  22. Stepkowski SM, Napoli KL, Wang ME, Qu X, et al. Effects of the pharmacokinetic interaction between orally administered sirolimus and cyclosporine on the synergistic prolongation of heart allograft survival in rats. Transplantation 1996; 62: 986–94

    Article  PubMed  CAS  Google Scholar 

  23. Hausen B, Ikonen T, Briffa N, et al. Combined immunosuppression with cyclosporine (Neoral) and SDZ RAD in nonhuman primate lung transplantation: systemic pharmacokinetic-based trials to improve efficacy and tolerability. Transplantation 2000; 69: 76–86

    Article  PubMed  CAS  Google Scholar 

  24. Hausen B, Boeke K, Berry G, et al. Suppression of acute rejection in allogenic rat lung transplantation: a study of the efficacy and pharmacokinetics of rapamycin derivative (SDZ RAD) used alone and in combination with a microemulsion formulation of cyclosporine. J Heart Lung Transplant 1999; 18: 150–9

    Article  PubMed  CAS  Google Scholar 

  25. Kahan BD. The synergistic effects of cyclosporine and sirolimus. Transplantation 1997; 63: 170

    Article  PubMed  CAS  Google Scholar 

  26. Kahan BD, Kaplan B, Lorber MI, et al. RAD in de novo renal transplantation: comparison of three doses on the incidence and severity of acute rejection. Transplantation 2001; 71: 1400–6

    Article  PubMed  CAS  Google Scholar 

  27. Schwarz C, Oberbauer R. The future role of target of rapamycin inhibitors in renal transplantation. Curr Opin Urol 2002; 12: 109–13

    Article  PubMed  Google Scholar 

  28. Dumont FJ, Kastner C, Iacovone Jr F, et al. Quantitative and temporal analysis of the cellular interaction of FK506 and rapamycin in T-lymphocytes. J Pharmacol Exp Ther 1994; 268: 32–41

    PubMed  CAS  Google Scholar 

  29. Curtis J, Nashan B, Ponticelli C, et al. One year results of a multicenter, open-label trial on safety and efficacy of Certican™ (RAD) used in combination with Simulect, corticosteroids, and full or reduced dose Neoral in renal transplantation [abstract 1335]. Am J Transplant 2001; 1 Suppl.: 474

    Google Scholar 

  30. Wilkinson A. Progress in the clinical application of immunosuppressive drugs in renal transplantation. Curr Opin Nephrol Hypertens 2001; 10: 763–70

    Article  PubMed  CAS  Google Scholar 

  31. Segarra I, Brazelton TR, Guterman N, et al. Development of a high-performance liquid chromatographic-electrospray mass spectrometric assay for the specific and sensitive quantification of the novel immunosuppressive macrolide 40-O-(2-hydroxyethyl)rapamycin. J Chromatogr B Biomed Sci Appl 1998; 720: 179–87

    Article  PubMed  CAS  Google Scholar 

  32. Salm P, Taylor PJ, Lynch SV, et al. Quantification and stability of everolimus (SDZ RAD) in human blood by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci J Chromatogr B 2002; 772: 283–90

    Article  CAS  Google Scholar 

  33. Vidal C, Kirchner GI, Wünsch G, et al. Automated simultaneous quantification of the immunosuppressants 40-O-(2-hydroxyethyl)rapamycin and cyclosporine in blood with electrospray-mass spectrometric detection. Clin Chem 1998; 44: 1275–82

    PubMed  CAS  Google Scholar 

  34. Kovarik JM, Kahan BD, Kaplan B, et al. Longitudinal assessment of everolimus in de novo renal transplant recipients over the first post-transplant year: pharmacokinetics, exposure-response relationships, and influence on cyclosporin. Clin Pharmacol Ther 2001; 69: 48–56

    Article  PubMed  CAS  Google Scholar 

  35. Kirchner GI, Vidal C, Winkler M, et al. LC/ESI-MS allows simultaneous and specific quantification of SDZ RAD and ciclosporin including their metabolites in human blood. Ther Drug Monit 1999; 21: 116–22

    Article  PubMed  CAS  Google Scholar 

  36. Christians U, Jacobsen W, Serkova N, et al. Automated, fast and sensitive quantification of drugs in blood by liquid chromatography-mass spectrometry with on-line extraction: immunosuppressants. J Chromatogr B Biomed Sci Appl 2000; 748: 41–53

    Article  PubMed  CAS  Google Scholar 

  37. McMahon LM, Luo S, Hayes M, et al. High-throughput analysis of everolimus (RAD001) and cyclosporin A (CsA) in whole blood by liquid chromatography/mass spectrometry using a semi-automated 96-well solid-phase extraction system. Rapid Commun Mass Spectrom 2000; 14: 1965–71

    Article  PubMed  CAS  Google Scholar 

  38. Brignol N, McMahon LM, Luo S, et al. High-throughput semi-automated 96-well liquid/liquid extraction and liquid chromatography/mass spectrometric analysis of everolimus (RAD 001) and cyclosporin A (CsA) in whole blood. Rapid Commun Mass Spectrom 2001; 15: 898–907

    Article  PubMed  CAS  Google Scholar 

  39. Streit F, Armstrong VW, Oellerich M. Rapid liquid chromatography-tandem mass spectrometry routine method for simultaneous determination of sirolimus, everolimus, tacrolimus, and cyclosporin A in whole blood. Clin Chem 2002; 48: 955–8

    PubMed  CAS  Google Scholar 

  40. Deters M, Kirchner G, Resch K, et al. Simultaneous quantification of sirolimus, everolimus, tacrolimus and cyclosporine by liquid chromatography-mass spectrometry (LC-MS). Clin Chem Lab Med 2002; 40: 285–92

    Article  PubMed  CAS  Google Scholar 

  41. Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 2002; 36: 981–5

    Article  PubMed  CAS  Google Scholar 

  42. Neumayer HH, Paradis K, Korn A, et al. Entry-into-human study with the novel immunosuppressant SDZ RAD in stable renal transplant recipients. Br J Clin Pharmacol 1999; 48: 694–703

    Article  PubMed  CAS  Google Scholar 

  43. Kahan BD, Wong RL, Carter C, et al. A phase I study of a 4-week course of SDZ RAD (RAD) in quiescent cyclosporin-prednisone-treated renal transplant recipients. Transplantation 1999; 68: 1100–6

    Article  PubMed  CAS  Google Scholar 

  44. Levy GA, Grant D, Paradis K, et al. Pharmacokinetics and tolerability of 40-O-[2-hydroxyethyl]rapamycin in de novo liver transplant recipients. Transplantation 2001; 71: 160–3

    Article  PubMed  CAS  Google Scholar 

  45. Doyle RL, Hertz MI, Dunitz JM, et al. RAD in stable lung and heart/lung transplant recipients; safety, tolerability, pharmacokinetics, and impact of cystic fibrosis. J Heart Lung Transplant 2001; 20: 330–9

    Article  PubMed  CAS  Google Scholar 

  46. Yacyshyn BR, Bowen-Yacyshyn MB, Pilarski LM. Inhibition by rapamycin of P-glycoprotein 170-mediated export from normal lymphocytes. Scand J Immunol 1996; 43: 449–55

    Article  PubMed  CAS  Google Scholar 

  47. Crowe A, Lemaire M. In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 1998; 15: 1666–72

    Article  PubMed  CAS  Google Scholar 

  48. Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998; 285: 1104–12

    PubMed  CAS  Google Scholar 

  49. Kovarik JM, Hsu CH, McMahon L, et al. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 2001; 70: 247–54

    Article  PubMed  CAS  Google Scholar 

  50. Tan KKC, Hue KL, Strickland SE, et al. Altered pharmacokinetics of cyclosporin in heart-lung transplant recipients with cystic fibrosis. Ther Drug Monit 1990; 12: 520–4

    Article  PubMed  CAS  Google Scholar 

  51. Kovarik JM, Sabia HD, Figueiredo J, et al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin Pharmacol Ther 2001; 70: 425–30

    PubMed  CAS  Google Scholar 

  52. Serkova N, Hausen B, Berry GJ, et al. Tissue distribution and clinical monitoring of the novel macrolide immunosuppressant SDZ-RAD and its metabolites in monkey lung transplant recipients: interaction with cyclosporine. J Pharmacol Exp Ther 2000; 294: 323–32

    PubMed  CAS  Google Scholar 

  53. Jacobsen W, Serkova N, Hausen B, et al. Comparison of the in vitro metabolism of the macrolide immunosuppressants sirolimus and RAD. Transplant Proc 2001; 33: 514–5

    Article  PubMed  CAS  Google Scholar 

  54. Kahan BD, Koch SM. Current immunosuppressant regimens: considerations for critical care. Curr Opin Crit Care 2001; 7: 242–50

    Article  PubMed  CAS  Google Scholar 

  55. Zimmerman J, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37: 405–15

    PubMed  CAS  Google Scholar 

  56. Kirchner GI, Winkler M, Mueller L, et al. Pharmacokinetics of SDZ RAD and cyclosporin including their metabolites in seven kidney graft patients after the first dose of SDZ RAD. Br J Clin Pharmacol 2000; 50: 449–54

    Article  PubMed  CAS  Google Scholar 

  57. Kirchner GI, Mueller L, Winkler M, et al. Long-term pharmacokinetics of the metabolites of everolimus (SDZ RAD) and cyclosporine in renal transplant recipients. Transplant Proc 2002; 34: 2233–4

    Article  PubMed  CAS  Google Scholar 

  58. Kovarik JM, Kalbag J, Figueiredo J, et al. Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmacol 2002; 42: 95–9

    Article  PubMed  CAS  Google Scholar 

  59. Vidal C, Kirchner GI, Sewing KF. Structural elucidation by electrospray mass spectrometry: an approach to the in vitro metabolism of the macrolide immuno-suppressant SDZ RAD. J Am Soc Mass Spectrom 1998; 9: 1267–74

    Article  PubMed  CAS  Google Scholar 

  60. Hallensleben K, Raida M, Habermehl G. Identification of a new metabolite of macrolide immunosuppressant, like rapamycin and SDZ RAD, using high performance liquid chromatography and electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 2000; 11: 516–25

    Article  PubMed  CAS  Google Scholar 

  61. Lhoest GJ, Gougnard TY, Verbeeck RK, et al. Isolation from pig liver microsomes, identification by tandem mass spectrometry and in vitro immunosuppressive activity of an SDZ-RAD 17,18,19,20,21,22-tris-epoxide. J Mass Spectrom 2000; 35: 454–60

    Article  PubMed  CAS  Google Scholar 

  62. Lhoest G, Hertsens R, Verbeeck RK, et al. In vitro immunosuppressive activity of tacrolimus dihydrodiol precursors obtained by chemical oxidation and identification of a new metabolite of SDZ-RAD by electrospray and electrospray-linked scan mass spectrometry. J Mass Spectrom 2001; 36: 889–901

    Article  PubMed  CAS  Google Scholar 

  63. Van Damme-Lombaerts R, Webb NAY, Hoyer PF, et al. Single-dose pharmacokinetics and tolerability of everolimus in stable pediatric renal transplant patients. Pediatr Transplant 2002; 6: 147–52

    Article  PubMed  Google Scholar 

  64. Ettenger RB, Grimm EM. Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis 2001; 38(4 Suppl. 2): S22–8

    Article  PubMed  CAS  Google Scholar 

  65. Hoyer PF, Ettenger R, Kovarik JM, et al. Everolimus in pediatric de novo renal transplant patients. Transplantation 2003; 75: 2082–5

    Article  PubMed  Google Scholar 

  66. Kovarik JM, Noe A, Berthier S, et al. Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol 2003; 43: 141–7

    Article  PubMed  CAS  Google Scholar 

  67. Kovarik JM, Hartmann S, Hubert M, et al. Pharmacokinetic and pharmacodynamic assessments of HMG-CoA reductase inhibitors when coadministered with everolimus. J Clin Pharmacol 2002; 42: 222–8

    Article  PubMed  CAS  Google Scholar 

  68. Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of food on everolimus absorption: quantification in healthy subjects and a confirmatory screening in patients with renal transplants. Pharmacotherapy 2002; 22: 154–9

    Article  PubMed  CAS  Google Scholar 

  69. Kovarik JM, Kaplan B, Tedesco Silva H, et al. Exposure-response relationships for everolimus in de novo kidney transplantation: defining a therapeutic range. Transplantation 2002; 73: 920–5

    Article  PubMed  CAS  Google Scholar 

  70. Nashan B. Early clinical experience with a novel rapamycin derivative. Ther Drug Monit 2002; 24: 53–8

    Article  PubMed  CAS  Google Scholar 

  71. Nashan B. The role of Certican (Everolimus, RAD) in the many pathways of chronic rejection. Transplant Proc 2001; 33: 3215–20

    Article  PubMed  CAS  Google Scholar 

  72. Lorber MI, Basadonna GP, Friedman AL, et al. The evolving role of TOR inhibitors for individualizing posttransplant immunosuppression. Transplant Proc 2001; 33: 3075–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 265 A7. The authors have provided no information on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele I. Kirchner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchner, G.I., Meier-Wiedenbach, I. & Manns, M.P. Clinical Pharmacokinetics of Everolimus. Clin Pharmacokinet 43, 83–95 (2004). https://doi.org/10.2165/00003088-200443020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443020-00002

Keywords

Navigation