Skip to main content
Log in

Pharmacokinetic Considerations Relating to Tacrolimus Dosing in the Elderly

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Relaxation of the upper age limits for solid organ transplantation coupled with improvements in post-transplant survival have resulted in greater numbers of elderly patients receiving immunosuppressant drugs such as tacrolimus. Tacrolimus is a potent agent with a narrow therapeutic window and large inter- and intraindividual pharmacokinetic variability. Numerous physiological changes occur with aging that could potentially affect the pharmacokinetics of tacrolimus and, hence, patient dosage requirements. Tacrolimus is primarily metabolised by cytochrome P450 (CYP) 3A enzymes in the gut wall and liver. It is also a substrate for P-glycoprotein, which counter-transports diffused tacrolimus out of intestinal cells and back into the gut lumen. Age-associated alterations in CYP3A and P-glycoprotein expression and/or activity, along with liver mass and body composition changes, would be expected to affect the pharmacokinetics of tacrolimus in the elderly. However, interindividual variation in these processes may mask any changes caused by aging.

More investigation is needed into the impact aging has on CYP and P-glycoprotein activity and expression. No single-dose, intense blood-sampling study has specifically compared the pharmacokinetics of tacrolimus across different patient age groups. However, five population pharmacokinetic studies, one in kidney, one in bone marrow and three in liver transplant recipients, have investigated age as a co-variate. None found a significant influence for age on tacrolimus bioavailability, volume of distribution or clearance. The number of elderly patients included in each study, however, was not documented and may have been only small.

It is likely that inter- and intraindividual pharmacokinetic variability associated with tacrolimus increase in elderly populations. In addition to pharmacokinetic differences, donor organ viability, multiple co-morbidity, polypharmacy and immunological changes need to be considered when using tacrolimus in the elderly. Aging is associated with decreased immunoresponsiveness, a slower body repair process and increased drug adverse effects. Elderly liver and kidney transplant recipients are more likely to develop new-onset diabetes mellitus than younger patients. Elderly transplant recipients exhibit higher mortality from infectious and cardiovascular causes than younger patients but may be less likely to develop acute rejection. Elderly kidney recipients have a higher potential for chronic allograft nephropathy, and a single rejection episode can be more devastating.

There is a paucity of information on optimal tacrolimus dosage and target trough concentration in the elderly. The therapeutic window for tacrolimus concentrations may be narrower. Further integrated pharmacokinetic-pharmacodynamic studies of tacrolimus are required. It would appear reasonable, based on current knowledge, to commence tacrolimus at similar doses as those used in younger patients. Maintenance dose requirements over the longer term may be lower in the elderly, but the increased variability in kinetics and the variety of factors that impact on dosage suggest that patient care needs to be based around more frequent monitoring in this age group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Danovitch GM, Cohen DJ, Weir MR, et al. Current status of kidney and pancreas transplantation in the United States, 1994–2003. Am J Transplant 2005; 5(2): 904–15

    Article  PubMed  Google Scholar 

  2. OPTN. The Organ Procurement and Transplant Network [online]. Available from URL: http://www.optn.org [Accessed 2005 Mar 17]

  3. Meier-Kriesche HU, Kaplan B. Immunosuppression in elderly renal transplant recipients: are current regimens too aggressive? Drugs Aging 2001; 18(10): 751–9

    Article  PubMed  CAS  Google Scholar 

  4. Rao VK. Kidney transplantation in older patients: risk and benefits. Drugs Aging 2002; 19(2): 79–84

    Article  PubMed  Google Scholar 

  5. Hanto DW, Fishbein TM, Pinson CW, et al. Liver and intestine transplantation: summary analysis, 1994–2003. Am J Transplant 2005; 5(2): 916–33

    Article  PubMed  Google Scholar 

  6. Barr ML, Bourge RC, Orens JB, et al. Thoracic organ transplantation in the United States, 1994–2003. Am J Transplant 2005; 5(2): 934–49

    Article  PubMed  Google Scholar 

  7. Plosker GL, Foster RH. Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 2000; 59(2): 323–89

    Article  PubMed  CAS  Google Scholar 

  8. Scott LJ, McKeage K, Keam SJ, et al. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs 2003; 63(12): 1247–97

    Article  PubMed  CAS  Google Scholar 

  9. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29(6): 404–30

    Article  PubMed  CAS  Google Scholar 

  10. Staatz CE, Tett SE. Pharmacokinetic and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004; 43(10): 623–53

    Article  PubMed  CAS  Google Scholar 

  11. Staatz CE, Willis C, Taylor PJ, et al. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther 2002; 72(6): 660–9

    Article  PubMed  CAS  Google Scholar 

  12. Staatz CE, Willis C, Taylor PJ, et al. Towards better outcomes with tacrolimus therapy: population pharmacokinetics and individualised dosage prediction in adult liver transplantation. Liver Transpl 2003; 9(2): 130–7

    Article  PubMed  Google Scholar 

  13. Jusko WJ, Thomson AW, Fung J, et al. Consensus document: therapeutic monitoring of tacrolimus (FK506). Ther Drug Monit 1995; 17: 606–14

    Article  PubMed  CAS  Google Scholar 

  14. Karamperis N, Povlsen JV, Hojskov C, et al. Comparison of the pharmacokinetics of tacrolimus and cyclosporine at equivalent molecular doses. Transplant Proc 2003; 35: 1314–8

    Article  PubMed  CAS  Google Scholar 

  15. Gruber SA, Hewitt JM, Sorenson AL, et al. Pharmacokinetics of FK506 after intravenous and oral administration in patients awaiting renal transplantation. J Clin Pharmacol 1994; 34(8): 859–64

    PubMed  CAS  Google Scholar 

  16. Venkataramanan R, Jain A, Warty VS, et al. Pharmacokinetics of FK 506 in transplant patients. Transplant Proc 1991; 23(6): 2736–40

    PubMed  CAS  Google Scholar 

  17. Jusko WJ, Piekoszewski W, Klintmalm GB, et al. Pharmacokinetics of tacrolimus in liver transplant patients. Clin Pharmacol Ther 1995; 57(3): 281–90

    Article  PubMed  CAS  Google Scholar 

  18. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29(6): 404–30

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 2001; 40(3): 159–68

    Article  PubMed  CAS  Google Scholar 

  20. Turnheim K. Drug dosage in the elderly: is it rational? Drugs Aging 1998; 13(5): 357–79

    Article  PubMed  CAS  Google Scholar 

  21. Turnheim K. When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol 2003; 38(8): 843–53

    Article  PubMed  CAS  Google Scholar 

  22. Noble RE. Drug therapy in the elderly. Metabolism 2003; 52(10): 27–30

    Article  PubMed  CAS  Google Scholar 

  23. Tuteja S, Alloway RR, Johnson JA, et al. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. Transplantation 2001; 71(9): 1303–7

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 2001; 40(3): 159–68

    Article  PubMed  CAS  Google Scholar 

  25. Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94

    Article  PubMed  CAS  Google Scholar 

  26. de Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999; 37(6): 485–505

    Article  PubMed  Google Scholar 

  27. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27(4): 383–91

    Article  PubMed  CAS  Google Scholar 

  28. Hustert E, Haberl M, Burk O, et al. The genetic determinates of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11(9): 773–9

    Article  PubMed  CAS  Google Scholar 

  29. Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87(11): 1322–30

    Article  PubMed  CAS  Google Scholar 

  30. Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependant metabolism. J Pharmacol Exp Ther 1997; 283(3): 1552–62

    PubMed  CAS  Google Scholar 

  31. von Richter O, Burk O, Fromm MF, et al. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 2004; 75(3): 172–83

    Article  CAS  Google Scholar 

  32. Warrington JS, Greenblatt DJ, von Moltke LL. Age-related differences in CYP3A expression and activity in the rat liver, intestine and kidney. J Pharmacol Exp Ther 2004; 309(2): 720–9

    Article  PubMed  CAS  Google Scholar 

  33. Paine MF, Ludington SS, Chen ML, et al. Do men and women differ in proximal small intestinal CYP3A and P-glycoprotein expression? Drug Metab Dispos 2005; 33(3): 426–33

    Article  PubMed  CAS  Google Scholar 

  34. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62(3): 248–60

    Article  PubMed  CAS  Google Scholar 

  35. Lin JH, Yamazaki M. Role of p-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003; 42(1): 59–98

    Article  PubMed  CAS  Google Scholar 

  36. Benet LZ, Izumi T, Zhang Y, et al. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 1999; 62(1–2): 25–31

    Article  PubMed  CAS  Google Scholar 

  37. Kivisto KT, Niemi M, Fromm MF. Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam Clin Pharmacol 2004; 18(6): 621–6

    Article  PubMed  CAS  Google Scholar 

  38. Fojo AT, Ueda K, Slamon DJ, et al. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 1987; 84(1): 265–9

    Article  PubMed  CAS  Google Scholar 

  39. Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001; 31: 469–97

    Article  PubMed  CAS  Google Scholar 

  40. Masuda S, Uemoto S, Hashida T, et al. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living-donor small bowel recipient. Clin Pharmacol Ther 2000; 68(1): 98–103

    Article  PubMed  CAS  Google Scholar 

  41. Kaplan B, Lown K, Craig R, et al. Low bioavailability of cyclosporine microemulsion and tacrolimus in a small bowel transplant recipient: possible relationship to intestinal P-glycoprotein activity. Transplantation 1999; 67(2): 333–5

    Article  PubMed  CAS  Google Scholar 

  42. Hashida T, Masuda S, Uemoto S, et al. Pharmacokinetic and prognostic significance of intestinal MDR1 expression in recipients of living-donor liver transplantation. Clin Pharmacol Ther 2001; 69(5): 308–16

    Article  PubMed  CAS  Google Scholar 

  43. Masuda S, Uemoto S, Goto M, et al. Tacrolimus therapy according to mucosal MDR1 levels in small-bowel transplant recipient. Clin Pharmacol Ther 2004; 75(4): 352–61

    Article  PubMed  CAS  Google Scholar 

  44. Witkowski JM, Miller RA. Increased function of P-glycoprotein in 7 lymphocyte subsets of ageing mice. J Immunol 1993; 150(4): 1296–306

    PubMed  CAS  Google Scholar 

  45. Gupta S. P-glycoprotein expression and regulation: age-related changes and potential effects on drug therapy. Drugs Aging 1995; 7(1): 19–29

    Article  PubMed  CAS  Google Scholar 

  46. Aggarwal S, Tsuruo T, Gupta S. Altered expression and function of P-glycoprotein (170 kDa), encoded by the MDR-1 gene, in T cell subsets from aging humans. J Clin Immunol 1997; 17(6): 448–54

    Article  PubMed  CAS  Google Scholar 

  47. Machado CG, Calado RT, Garcia AB, et al. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes. Braz J Med Biol Res 2003; 36(12): 1653–7

    Article  PubMed  CAS  Google Scholar 

  48. Pilarski LM, Paine D, McElhaney JE, et al. Multidrug transporter P-glycoprotein 170 as a differentiation antigen on normal human lymphocytes and thymocytes. Am J Hematol 1995; 49(4): 328–35

    Article  Google Scholar 

  49. Leith CP, Kopecky KJ, Chen I-M, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDRl/P-glycoprotein, MRP1 and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94(3): 1086–99

    PubMed  CAS  Google Scholar 

  50. Calado RT, Machado CG, Carneiro JJ, et al. Age-related changes in P-glycoprotein-mediated rhodamine 123 efflux in normal human bone marrow hematopoietic stem cells. Leukemia 2003; 17(4): 816–8

    Article  PubMed  CAS  Google Scholar 

  51. Warrington JS, Greenblatt DJ, von Moltke LL. The effect of age on P-glycoprotein expression and function in the Fischer-344 rat. J Pharmacol Exp Ther 2004; 309(2): 730–6

    Article  PubMed  CAS  Google Scholar 

  52. Nagase K, Iwasaki K, Nozaki K, et al. Distribution and protein binding of FK506, a potent immunosuppressive macrolide lactone, in human blood and its uptake by erythrocytes. J Pharm Pharmacol 1994; 46(2): 113–7

    Article  PubMed  CAS  Google Scholar 

  53. Warty VS, Venkataramanan R, Zendehrouh P, et al. Practical aspects of FK 506 analysis (Pittsburgh experience). Transplant Proc 1991; 23(6): 2730–1

    PubMed  CAS  Google Scholar 

  54. Jusko WJ, D’Ambrosio R. Monitoring FK 506 concentrations in plasma and whole blood. Transplant Proc 1991; 23(6): 2732–5

    PubMed  CAS  Google Scholar 

  55. Beysens AJ, Wijnen RM, Beuman GH, et al. FK 506: monitoring in plasma or in whole blood? Transplant Proc 1991; 23(6): 2745–7

    PubMed  CAS  Google Scholar 

  56. Jusko WJ. Analysis of tacrolimus (FK 506) in relation to therapeutic drug monitoring. Ther Drug Monit 1995; 17(6): 596–601

    Article  PubMed  CAS  Google Scholar 

  57. Nagase K, Iwasaki K, Nozaki K, et al. Distribution and protein binding of FK506, a potent immunosuppressive macrolide lactone, in human blood and its uptake by erythrocytes. J Pharm Pharmacol 1994; 46(2): 113–7

    Article  PubMed  CAS  Google Scholar 

  58. Piekoszewski W, Chow FS, Jusko WJ. Disposition of tacrolimus (FK 506) in rabbits: role of red blood cell binding in hepatic clearance. Drug Metab Dispos 1993; 21(4): 690–8

    PubMed  CAS  Google Scholar 

  59. Moller A, Iwasaki K, Kawamura A, et al. The disposition of l4C-labeled tacrolimus after intravenous and oral administration in healthy human subjects. Drug Metab Dispos 1999; 27(6): 633–60

    PubMed  CAS  Google Scholar 

  60. Iwasaki K, Shiraga T, Matsuda H, et al. Further metabolism of FK506 (tacrolimus): identification and biological activities of the metabolites oxidized at multiple sites of FK506. Drug Metab Dispos 1995; 23(1): 28–34

    PubMed  CAS  Google Scholar 

  61. Alak AM, Moy S. Biological activity of tacrolimus (FK506) and its metabolites from whole blood of kidney transplant patients. Transplant Proc 1997; 29(5): 2487–90

    Article  PubMed  CAS  Google Scholar 

  62. Gonschior AK, Christians U, Winkler M, et al. Tacrolimus (FK506) metabolite patterns in blood from liver and kidney transplant patients. Clin Chem 1996; 42(9): 1426–32

    PubMed  CAS  Google Scholar 

  63. Christians U, Braun F, Kosian N, et al. High performance liquid chromatography/mass spectrometry of FK 506 and its metabolites in blood, bile, and urine of liver grafted patients. Transplant Proc 1991; 23(6): 2741–4

    PubMed  CAS  Google Scholar 

  64. Christians U, Braun F, Schmidt M, et al. Specific and sensitive measurement of FK506 and its metabolites in blood and urine of liver-graft recipients. Clin Chem 1992; 38(10): 2025–32

    PubMed  CAS  Google Scholar 

  65. Jain AB, Venkataramanan R, Cadoff E, et al. Effects of hepatic dysfunction and T tube clamping on FK506 pharmacokinetics and trough concentrations. Transplant Proc 1990; 22(1): 57–9

    PubMed  CAS  Google Scholar 

  66. Bekersky I, Dressier D, Alak A, et al. Comparative tacrolimus pharmacokinetics: normal versus mildly hepatically impaired subjects. J Clin Pharmacol 2001; 41(6): 628–35

    Article  PubMed  CAS  Google Scholar 

  67. Abu-Elmagd K, Fung JJ, Alessiani M, et al. The effect of graft function on FK506 plasma levels, dosages, and renal function, with particular reference to the liver. Transplantation 1991; 52(1): 71–7

    Article  PubMed  CAS  Google Scholar 

  68. Abu-Elmagd KM, Fung JJ, Alessiani M, et al. Strategy of FK 506 therapy in liver transplant patients: effect of graft function. Transplant Proc 1991; 23(6): 2771–4

    PubMed  CAS  Google Scholar 

  69. Kinirons MT, Crome P. Clinical pharmacokinetic considerations in the elderly. Clin Pharmacokinet 1997; 33(4): 302–31

    Article  PubMed  CAS  Google Scholar 

  70. Woodhouse KM, James OFW. Hepatic drug metabolism and ageing. Br Med Bull 1990; 46(1): 22–35

    PubMed  CAS  Google Scholar 

  71. Schmucker DL. Aging and the liver: an update. J Gerontol 1998; 53(5): B315–20

    CAS  Google Scholar 

  72. Varanasi RV, Varanasi SC, Howell CD. Liver diseases. Clin Geriatr Med 1999; 15(3): 559–70

    PubMed  CAS  Google Scholar 

  73. Bach B, Hansen JM, Kampmann JP, et al. Disposition of antipyrine and phenytoin correlated with age and liver volume in man. Clin Pharmacokinet 1981; 6(5): 389–96

    Article  PubMed  CAS  Google Scholar 

  74. Swift CG, Homeida M, Halliwell M, et al. Antipyrine disposition and liver size in the elderly. Eur J Clin Pharmacol 1978; 14(2): 149–52

    Article  PubMed  CAS  Google Scholar 

  75. Mooney H, Roberts R, Cooksley WG, et al. Alterations in the liver with ageing. Clin Gastroenterol 1985; 14(4): 757–71

    PubMed  CAS  Google Scholar 

  76. Schmucker DL. Liver function and phase 1 drug metabolism in the elderly: a review. Drugs Aging 2001; 18(11): 837–51

    Article  PubMed  CAS  Google Scholar 

  77. Montamat SC, Cusack BJ, Vestal RE. Management of drug therapy in the elderly. N Engl J Med 1989; 321(5): 303–9

    Article  PubMed  CAS  Google Scholar 

  78. Chandler HH, Blouin RA. Dietary influences on drug disposition. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics. 3rd ed. Vancouver (WA): Applied Therapeutics Inc., 1992: 12.1–12.17

    Google Scholar 

  79. Williams FM, Wynne H, Woodhouse KW, et al. Plasma aspirin esterase: the influence of old age and frailty. Age Ageing 1989; 18(1): 39–42

    Article  PubMed  CAS  Google Scholar 

  80. Wynne HA, Cope LH, Herd B, et al. The association of age and frailty with paracetamol conjugation in man. Age Ageing 1990; 19(6): 419–24

    Article  PubMed  CAS  Google Scholar 

  81. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389–430

    Article  PubMed  CAS  Google Scholar 

  82. Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 1990; 38(2): 207–13

    PubMed  CAS  Google Scholar 

  83. Schuetz JD, Molowa DT, Guzelian PS. Characterization of a cDNA encoding a new member of the glucocorticoid-respon-sive cytochromes P450 in human liver. Arch Biochem Biophys 1989; 274(2): 355–65

    Article  PubMed  CAS  Google Scholar 

  84. Tateishi T, Watanabe M, Moriya H, et al. No ethnic difference between Caucasian and Japanese hepatic samples in the expression frequency of CYP3A5 and CYP3A7 proteins. Biochem Pharmacol 1999; 57(8): 935–9

    Article  PubMed  CAS  Google Scholar 

  85. Lin YS, Dowling AL, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62(1): 162–72

    Article  PubMed  CAS  Google Scholar 

  86. Le Couteur DG, McLean AJ. The aging liver: drug clearance and an oxygen diffusion barrier hypothesis. Clin Pharma-cokinet 1998; 34(5): 359–73

    Article  Google Scholar 

  87. Kinirons MT, O’Mahony MS. Drug metabolism and ageing. Br J Clin Pharmacol 2004; 57(5): 540–4

    Article  PubMed  CAS  Google Scholar 

  88. Hunt CM, Westerkam WR, Stave GM, et al. Hepatic cytochrome P-4503A (CYP3A) activity in the elderly. Mech Ageing Dev 1992; 64(1–2): 189–99

    Article  PubMed  CAS  Google Scholar 

  89. Transon C, Lecoeur S, Leemann T, et al. Interindividual variability in catalytic activity and immunoreactivity of three major human liver cytochrome P450 isoenzymes. Eur J Clin Pharmacol 1996; 51(1): 79–85

    Article  PubMed  CAS  Google Scholar 

  90. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414–23

    PubMed  CAS  Google Scholar 

  91. Parkinson A, Mudra DR, Johnson C, et al. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol 2004; 199(3): 193–209

    Article  PubMed  CAS  Google Scholar 

  92. George J, Byth K, Farrell GC. Age but not gender selectively affects expression of individual cytochrome P450 proteins in human liver. Biochem Pharmacol 1995; 50(5): 727–30

    Article  PubMed  CAS  Google Scholar 

  93. Patki KC, von Moltke LL, Harmatz JS, et al. Effect of age on in vitro triazolam biotransformation in male human liver microsomes. J Pharmacol Exp Ther 2004; 308(3): 874–9

    Article  PubMed  CAS  Google Scholar 

  94. Schwartz JB. Race but not age affects erythromycin breath test results in older hypertensive men. J Clin Pharmacol 2001; 41(3): 324–9

    Article  PubMed  CAS  Google Scholar 

  95. Baker SD, van Schaik RHN, Rivory LP, et al. Factors affecting cytochrome P450 3A activity in cancer patients. Clin Cancer Res 2004; 10(24): 8341–50

    Article  PubMed  CAS  Google Scholar 

  96. Cotreau MM, von Moltke LL, Greenblatt DJ. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 2005; 44(1): 33–60

    Article  PubMed  CAS  Google Scholar 

  97. Mangoni AA, Jackson SHD. Age-related changes in pharma-cokinetic and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol 2003; 57(1): 6–14

    Article  CAS  Google Scholar 

  98. Gorski JC, Vannaprasaht S, Hamman MA, et al. The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin Pharmacol Ther 2003; 74(3): 275–87

    Article  PubMed  CAS  Google Scholar 

  99. Platten HP, Schweizer E, Dilger K, et al. Pharmacokinetics and pharmacodynamic action of midazolam in young and elderly patients undergoing tooth extraction. Clin Pharmacol Ther 1998; 63(5): 552–60

    Article  PubMed  CAS  Google Scholar 

  100. Fujisawa Healthcare Inc. Prograf prescribing information (US) [online]. Available from URL: http://www.fujisawa.com/medinfo/pi [Accessed 2004 Dec 1]

  101. Bekersky I, Dressler D, Alak A, et al. Comparative tacrolimus pharmacokinetics: normal versus mildly hepatically impaired subjects. J Clin Pharmacol 2001; 41(6): 628–35

    Article  PubMed  CAS  Google Scholar 

  102. Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39(1): 91–6

    Article  PubMed  CAS  Google Scholar 

  103. Sewing KF. Pharmacokinetics, dosing principles, and blood level monitoring of FK506. Transplant Proc 1994; 26(6): 3267–9

    PubMed  CAS  Google Scholar 

  104. Hebert MF, Park JM, Chen Y, et al. Effects of St John’s wort (Hypericum perforatum) on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 2004; 44(1): 89–94

    Article  PubMed  CAS  Google Scholar 

  105. Mancinelli LM, Frassetto L, Floren LC, et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther 2001; 69(1): 24–31

    Article  PubMed  CAS  Google Scholar 

  106. Fay JW, Wingard JR, Antin JH, et al. FK506 (tacrolimus) monotherapy for prevention of graft-versus-host disease after histocompatible sibling allogenic bone marrow transplantation. Blood 1996; 87(8): 3514–9

    PubMed  CAS  Google Scholar 

  107. Boswell GW, Bekersky I, Fay J, et al. Tacrolimus pharmacokinetics in BMT patients. Bone Marrow Transplant 1998; 21(1): 23–8

    Article  PubMed  CAS  Google Scholar 

  108. Mekki QA, Piscitelli D, Fitzsimmons WE. Pharmacokinetics of tacrolimus in bone marrow transplant patients [abstract]. Clin Pharmacol Ther 1993; 55(2): 149

    Google Scholar 

  109. Gruber SA, Hewitt JM, Sorenson AL, et al. Pharmacokinetics of FK506 after intravenous and oral administration in patients awaiting renal transplantation. J Clin Pharmacol 1994; 34(8): 859–64

    PubMed  CAS  Google Scholar 

  110. Satoh S, Tada H, Tachiki Y, et al. Chrono and clinical pharmacokinetic study of tacrolimus in continuous intravenous administration. Int J Urol 2001; 8(7): 353–8

    Article  PubMed  CAS  Google Scholar 

  111. Lee CC, Hewitt JM, Aweeka FT, et al. Pharmacokinetics of tacrolimus (FK506) prior to kidney transplantation [abstract]. Clin Pharmacol Ther 1993; 53(2): 238

    Google Scholar 

  112. Saito K, Suwa M, Nakagawa Y, et al. Study of pharmacokinetic parameters of tacrolimus by different oral administration periods in renal transplantation. Transplant Proc 2002; 34(5): 1726–9

    Article  PubMed  CAS  Google Scholar 

  113. Tuteja S, Alloway RR, Johnson JA, et al. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. Transplantation 2001; 71(9): 1303–7

    Article  PubMed  CAS  Google Scholar 

  114. Mekki QA, Lee CC, Aweeka FT, et al. Pharmacokinetics of tacrolimus (FK506) in kidney transplant patients [abstract]. Clin Pharmacol Ther 1993; 53(2): 238

    Google Scholar 

  115. Kuypers DR, Claes K, Evenepoel P, et al. Time-related clinical determinates of long-term tacrolimus pharmacokinetics in combination therapy with mycophenolic acid and corticoste-roids: a prospective study in one hundred de novo renal transplant recipients. Clin Pharmacokinet 2004; 43(11): 741–62

    Article  PubMed  CAS  Google Scholar 

  116. Jusko WJ, Piekoszewski W, Klintmalm GB, et al. Pharmacokinetics of tacrolimus in liver transplant patients. Clin Pharmacol Ther 1995; 57(3): 281–90

    Article  PubMed  CAS  Google Scholar 

  117. Regazzi MB, Rinaldi M, Molinaro M, et al. Clinical pharmacokinetics of tacrolimus in heart transplant recipients. Ther Drug Monit 1999; 21(1): 2–7

    Article  PubMed  CAS  Google Scholar 

  118. Molinaro M, Regazzi MB, Pasquino S, et al. Pharmacokinetics of tacrolimus during the early phase after heart transplantation. Transplant Proc 2001; 33(3): 2386–9

    Article  PubMed  CAS  Google Scholar 

  119. Undre PJ, Stevenson PJ, the European Tacrolimus Heart Study Group. Pharmacokinetics of tacrolimus in heart transplantation. Transplant Proc 2002; 34(5): 1836–8

    Article  PubMed  CAS  Google Scholar 

  120. Rubio A, del Prado A, Molina LMM, et al. Clinical pharmacokinetics of tacrolimus in heart transplantation: new strategies of monitoring. Transplant Proc 2003; 35(5): 1988–91

    Article  CAS  Google Scholar 

  121. Jain A, Venkataramanan R, Todo S, et al. Intravenous, oral pharmacokinetics, and oral dosing of FK506 in small bowel transplant patients. Transplant Proc 1992; 24(3): 1181–2

    PubMed  CAS  Google Scholar 

  122. Jain A, Venkataramanan R, Lever J, et al. FK 506 in small bowel transplant recipients: pharmacokinetics and dosing. Transplant Proc 1994; 26(3): 1609–10

    PubMed  CAS  Google Scholar 

  123. Bruce NJ, Thomson AH, Elliott HL. Population pharmacokinetics of tacrolimus in liver transplant patients. PAGE conference, Frankfurt 1995 [online]. Available from URL: http://www.page-meeting.org [Accessed 2005 May 31]

  124. Fukatsu S, Yano I, Igarashi T, et al. Population pharmacokinetics of tacrolimus in adult recipients receiving living-donor liver transplantation. Eur J Clin Pharmacol 2001; 57(6–7): 479–84

    PubMed  CAS  Google Scholar 

  125. Jacobson P, Ng J, Ratanatharathorn V, et al. Factors affecting the pharmacokinetics of tacrolimus (FK506) in hematopoietic cell transplant (HCT) patients. Bone Marrow Transplant 2001; 28(8): 753–8

    Article  PubMed  CAS  Google Scholar 

  126. Tett SE, Holford NHG, McLachlan AJ. Population pharmacokinetics and pharmacodynamics: an underutilized resource. Drug Info J 1998; 32(3): 693–710

    Article  Google Scholar 

  127. Minto C, Schnider T. Expanding clinical applications of population pharmacodynamic modelling. Br J Clin Pharmacol 1998; 46(4): 321–33

    Article  PubMed  CAS  Google Scholar 

  128. Williams PJ, Ette EI. The role of population pharmacokinetics in drug development in light of the Food and Drug Administration’s ‘Guidance for Industry: Population Pharmacokinetics’. Clin Pharmacokinet 2000; 39(6): 385–95

    Article  PubMed  CAS  Google Scholar 

  129. Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 1977; 5(5): 445–79

    PubMed  CAS  Google Scholar 

  130. van Gelder T. Drug interactions with tacrolimus. Drug Saf 2002; 25(10): 707–12

    Article  PubMed  Google Scholar 

  131. Bernardo JF, McCauley J. Drug therapy in transplant recipients: special considerations in the elderly with comorbid conditions. Drugs Aging 2004; 21(5): 323–48

    Article  PubMed  CAS  Google Scholar 

  132. Morales JM, Andres A, Pallardo L, et al. Documento de consenso: trasplante renal en pacientes de edad avanzada con un rinon de un donante anoso. Nefrologia 1998; 18(5): 32–46

    Google Scholar 

  133. de Fijter JW, Mallat MJK, Doxiadis IIN, et al. Increased immunogenicity and cause of graft loss of old donor kidneys. J Am Soc Nephrol 2001; 12(7): 1538–46

    PubMed  Google Scholar 

  134. Grinyo JM. Borderline kidney graft donors: what are the problems? Nephrol Dial Transplant 2000; 15(7): 950–2

    Article  PubMed  CAS  Google Scholar 

  135. Basar H, Soran A, Shapiro R, et al. Renal transplantation in recipients over the age of 60: the impact of donor age. Transplantation 1999; 67(8): 1191–3

    Article  PubMed  CAS  Google Scholar 

  136. Smith CM, Davies DB, McBride MA. Liver transplantation in the United States: a report from the UN OS Liver Transplant Registry. Clin Transpl 1999: 34

    Google Scholar 

  137. Morgan JA, John R, Weinberg AD, et al. Long-term results of cardiac transplantation in patients 65 years of age and older: a comparative analysis. Ann Thorac Surg 2003; 76(6): 1982–7

    Article  PubMed  Google Scholar 

  138. Sumrani N, Daskalakis P, Miles AM, et al. The influence of donor age on function of renal allografts from related donors. Clin Nephrol 1993; 39(5): 260–4

    PubMed  CAS  Google Scholar 

  139. Waiser J, Budde K, Bohler T, et al. The influence of age on outcome after renal transplantation. Geriatr Nephrol Urol 1997; 7(3): 137–46

    Article  PubMed  CAS  Google Scholar 

  140. Alexander JW, Bennett LE, Breen TJ. Effects of donor age on outcome of kidney transplantation: a two year analysis of transplants reported to the United Network for Organ Sharing Registry. Transplantation 1994; 57(6): 871–6

    Article  PubMed  CAS  Google Scholar 

  141. Morales JM, Campistol JM, Andres A, et al. Immunosuppression in older renal transplant patients. Drugs Aging 2000; 16(4): 279–87

    Article  PubMed  CAS  Google Scholar 

  142. Nankivell BJ, Borrows RJ, Fung CL, et al. Delta analysis of posttransplantation tubulointerstitial damage. Transplantation 2004; 78(3): 434–41

    Article  PubMed  Google Scholar 

  143. Doyle SE, Matas AJ, Gillingham K, et al. Predicting clinical outcome in the elderly renal transplant patient. Kidney Int 2000; 57(5): 2144–50

    Article  PubMed  CAS  Google Scholar 

  144. Meier-Kriesche HU, Ojo AO, Hanson JA, et al. Exponentially increased risk of infectious death in older renal transplant recipients. Kidney Int 2001; 59(4): 1539–43

    Article  PubMed  CAS  Google Scholar 

  145. Fagiolo U, Amadori A, Biselli R. Quantitative and qualitative analysis of anti-tetanus toxin antibody response in the elderly: humoral immune response enhanced by thymostimulin. Vaccine 1993; 11(13): 1336–40

    Article  PubMed  CAS  Google Scholar 

  146. Yung RL. Changes in immune function with age. Rheum Dis Clin North Am 2000; 26(3): 455–73

    Article  PubMed  CAS  Google Scholar 

  147. Gillis S, Kozak R, Durante M. Immunological studies of aging: decreased production of and response to T cell growth factor by lymphocytes from aged humans. J Clin Invest 1981; 67(4): 937–42

    Article  PubMed  CAS  Google Scholar 

  148. Whisler RL, Liu B, Wu LC. Reduced activation of transcriptional factor AP-1 among peripheral blood T cells from elderly humans after PHA stimulation: restorative effects of phorbol diesters. Cell Immunol 1993; 152(1): 96–109

    Article  PubMed  CAS  Google Scholar 

  149. Davidson JA, Wilkinson A. New-Onset Diabetes After Transplantation 2003 International Consensus Guidelines: an en-docrinologist’s view. Diabetes Care 2004; 27(3): 805–12

    Article  PubMed  Google Scholar 

  150. Marchetti P. New-onset diabetes after transplantation. J Heart Lung Transplant 2004; 23Suppl. 5: S194–201

    Article  PubMed  Google Scholar 

  151. Kappes U, Schanz G, Gerhardt U, et al. Influence of age on the prognosis of renal transplant recipients. Am J Nephrol 2001; 21(4): 259–63

    Article  PubMed  CAS  Google Scholar 

  152. Garcia CE, Garcia RFL, Mayer AD, et al. Liver transplantation in patients over sixty years of age. Transplantation 2001; 72(4): 679–84

    Article  PubMed  CAS  Google Scholar 

  153. Levy MF, Somasundar PS, Jennings LW, et al. The elderly liver transplant recipient: a call for caution. Ann Surg 2001; 233(1): 107–13

    Article  PubMed  CAS  Google Scholar 

  154. Herrero JI, Lucena JF, Quiroga J, et al. Liver transplant recipients older than 60 years have lower survival and higher incidence of malignancy. Am J Transplant 2003; 3(11): 1407–12

    Article  PubMed  Google Scholar 

  155. Keck BM, Bennett LE, Rosendale J, et al. Worldwide thoracic organ transplantation: a report from the UNOS/ISHLT International Registry for Thoracic Organ Transplantation. Clin Transpl 1999: 49

    Google Scholar 

  156. Lindholm A, Albrechtsen D, Frodin L, et al. Ischemic heart disease: major cause of death and graft loss after renal transplantation. Transplantation 1995; 60(5): 451–7

    Article  PubMed  CAS  Google Scholar 

  157. Meier-Kriesche H, Ojo AO, Arndorfer JA, et al. Need for individualised immunosuppression in elderly renal transplant recipients. Transplant Proc 2001; 33(1–2): 1190–1

    Article  PubMed  CAS  Google Scholar 

  158. Ost L, Groth CG, Lindholm B, et al. Cadaveric renal transplantation in patients of 60 years and above. Transplantation 1980; 30(5): 339–40

    Article  PubMed  CAS  Google Scholar 

  159. Wedel N, Brynger H, Blohme I. Kidney transplantation in patients 60 years and older. Scand J Urol Nephrol Suppl 1980; 54: 106–8

    PubMed  CAS  Google Scholar 

  160. Meier-Kriesche HU, Friedman G, Jacobs M, et al. Infectious complications in geriatric renal transplant patients: comparison of two immunosuppressive protocols. Transplantation 1999; 68(10): 1496–502

    Article  PubMed  CAS  Google Scholar 

  161. Lufft V, Kliem V, Tusch G, et al. Renal transplantation in older adults: is graft survival affected by age? A case control study. Transplantation 2000; 69(5): 790–4

    Article  PubMed  CAS  Google Scholar 

  162. Meier-Kriesche HU, Ojo A, Hanson J, et al. Increased immunosuppressive vulnerability in elderly renal transplant recipients. Transplantation 2000; 69: 885–9

    Article  PubMed  CAS  Google Scholar 

  163. Meier-Kriesche HU, Ojo AO, Cibrik DM, et al. Relationship of recipient age and development of chronic allograft failure. Transplantation 2000; 70(2): 306–10

    Article  PubMed  CAS  Google Scholar 

  164. Becker BN, Ismail N, Becker YT, et al. Renal transplantation in the older end stage renal disease patient. Semin Nephrol 1996; 16(4): 353–62

    PubMed  CAS  Google Scholar 

  165. Mayer AD, Dmitrewski J, Squifflet JP, et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Renal Study Group. Transplantation 1997; 64(3): 436–43

    Article  PubMed  CAS  Google Scholar 

  166. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective randomized trail of FK506-based immunosuppression after renal transplantation. Transplantation 1995; 59(4): 485–90

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Neither author has any potential conflict of interest directly or indirectly relevant to this manuscript.

Partially supported by a National Health & Medical Research Council (NHMRC) Neil Hamilton Fairley Fellowship, awarded to C. Staatz, and an NHMRC Project Grant 210173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Staatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staatz, C.E., Tett, S.E. Pharmacokinetic Considerations Relating to Tacrolimus Dosing in the Elderly. Drugs Aging 22, 541–557 (2005). https://doi.org/10.2165/00002512-200522070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200522070-00001

Keywords

Navigation