Skip to main content
Log in

Pharmacogenetic Aspects of Drug-Induced Torsade de Pointes

Potential Tool for Improving Clinical Drug Development and Prescribing

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Drug-induced torsade de pointes (TdP) has proved to be a significant iatrogenic cause of morbidity and mortality and a major reason for the withdrawal of a number of drugs from the market in recent times. Enzymes that metabolise many of these drugs and the potassium channels that are responsible for cardiac repolarisation display genetic polymorphisms. Anecdotal reports have suggested that in many cases of drug-induced TdP, there may be a concealed genetic defect of either these enzymes or the potassium channels, giving rise to either high plasma drug concentrations or diminished cardiac repolarisation reserve, respectively. The presence of either of these genetic defects may predispose a patient to TdP, a potentially fatal adverse reaction, even at therapeutic dosages of QT-prolonging drugs and in the absence of other risk factors. Advances in pharmacogenetics of drug metabolising enzymes and pharmacological targets, together with the prospects of rapid and inexpensive genotyping procedures, promise to individualise and improve the benefit/risk ratio of therapy with drugs that have the potential to cause TdP. The qualitative and the quantitative contributions of these genetic defects in clinical cases of TdP are unclear because not all of the patients with TdP are routinely genotyped and some relevant genetic mutations still remain to be discovered.

There are regulatory guidelines that recommend strategies aimed at uncovering the risk of TdP associated with new chemical entities during their development. There are also a number of guidelines that recommend integrating pharmacogenetics in this process. This paper proposes a strategy for integrating pharmacogenetics into drug development programmes to optimise association studies correlating genetic traits and endpoints of clinical interest, namely failure of efficacy or development of repolarisation abnormalities. Until pharmacogenetics is carefully integrated into all phases of development of QT-prolonging drugs and large-scale studies are undertaken during their post-marketing use to determine the genetic components involved in induction of TdP, routine genotyping of patients remains unrealistic.

Even without this pharmacogenetic data, the clinical risk of TdP can already be greatly minimised. Clinically, a substantial proportion of cases of TdP are due to the use of either high or usual dosages of drugs with potential to cause TdP in the presence of factors that inhibit drug metabolism. Therefore, choosing the lowest effective dose and identifying patients with these non-genetic risk factors are important means of minimising the risk of TdP. In view of the common secondary pharmacology shared by these drugs, a standard set of contraindications and warnings have evolved over the last decade. These include factors responsible for pharmacokinetic or pharmacodynamic drug interactions. Among the latter, the more important ones are bradycardia, electrolyte imbalance, cardiac disease and co-administration of two or more QT-prolonging drugs.

In principle, if large scale prospective studies can demonstrate a substantial genetic component, pharmacogenetically driven prescribing ought to reduce the risk further. However, any potential benefits of pharmacogenetics will be squandered without any reduction in the clinical risk of TdP if physicians do not follow prescribing and monitoring recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. International Conference on Harmonisation (ICH) Guidelines. Note for Guidance on Dose Response Information to Support Drug Registration. (CPMP/ICH/378/95). Committee for Proprietary Medicinal Products, London, May 1995 [online]. Available from URL: http://www.emea.eu.int/htms/human/ich/efficacy/ichfin.htm [Accessed 2003 Apr 15]

  2. McLeod HL, Evans WE. Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol 2001; 41: 101–21

    Article  PubMed  CAS  Google Scholar 

  3. Kalow W. Pharmacogenetics: heredity and the response to drugs. Philadelphia (PA): WB Saunders, 1962

    Google Scholar 

  4. Vogel F. Moderne probleme der humangenetik. Ergeb Inn Med Kinderheilkd 1959; 12: 52-125

    Google Scholar 

  5. Shah RR. Drug-induced prolongation of the QT interval: why the regulatory concern? Fundam Clin Pharmacol 2002; 16: 119–24

    Article  PubMed  CAS  Google Scholar 

  6. Shah RR. Drug-induced prolongation of the QT interval: regulatory dilemmas and implications for approval and labelling of a new chemical entity. Fundam Clin Pharmacol 2002; 16: 147–56

    Article  PubMed  CAS  Google Scholar 

  7. Shah RR. The significance of QT interval in drug development. Br J Clin Pharmacol 2002; 54: 188–202

    Article  PubMed  CAS  Google Scholar 

  8. Salle P, Rey JL, Bernasconi P, et al. Torsades de pointe. Apropos of 60 cases [in French]. Ann Cardiol Angeiol (Paris) 1985; 34: 381–8

    CAS  Google Scholar 

  9. Milon D, Daubert JC, Saint-Marc C, et al. Torsade de pointes: apropos of 54 cases [in French]. Ann Fr Anesth Reanim 1982; 1: 513–20

    Article  PubMed  CAS  Google Scholar 

  10. Fung MC, Hsiao-hui Wu H, Kwong K, et al. Evaluation of the profile of patients with QTc prolongation in spontaneous adverse event reporting over the past 3 decades: 1969-1998 [abstract]. Pharmacoepidemiol Drug Saf 2000; 9Suppl. 1: S24–5

    Google Scholar 

  11. The Assessment of the Potential for QT Interval Prolongation by Non-Cardiovascular Medicinal Products (CPMP/986/96). Committee for Proprietary Medicinal Products, London, Dec 1997 [online]. Available from URL: http://www.emea.eu.int/htms/human/swp/swpptc.htm [Accessed 2003 Apr 15]

  12. Priori SG, Barhanin J, Hauer RNW, et al. Genetic and molecular basis of cardiac arrhythmias: impact on clinical management. Eur Heart J 1999; 20: 174–95

    Article  PubMed  CAS  Google Scholar 

  13. Bauman JL, Bauernfeind RA, Hoff JV, et al. Torsade de pointes due to quinidine: observations in 31 patients. Am Heart J 1984; 107: 425–30

    Article  PubMed  CAS  Google Scholar 

  14. MacNeil DJ, Davies RO, Deitchman D. Clinical safety profile of sotalol in the treatment of arrhythmias. Am J Cardiol 1993; 72: 44A–50A

    Article  PubMed  CAS  Google Scholar 

  15. McKibbin JK, Pocock WA, Barlow JB, et al. Sotalol, hypokalaemia, syncope, and torsade de pointes. Br Heart J 1984; 2: 157–62

    Article  Google Scholar 

  16. Ben-David J, Zipes DP. Alpha-adrenoceptor stimulation and blockade modulates cesium-induced early after depolarizations and ventricular tachyarrhythmias in dogs. Circulation 1990; 82: 225–33

    Article  PubMed  CAS  Google Scholar 

  17. Lu HR, Remeysen P, De Clerck F. Nonselective I (Kr)-blockers do not induce torsades de pointes in the anesthetized rabbit during alpha1-adrenoceptor stimulation. J Cardiovasc Pharmacol 2000; 36: 728–36

    Article  PubMed  Google Scholar 

  18. Furushima H, Chinushi M, Washizuka T, et al. Role of α1-blockade in congenital long QT syndrome: investigation by exercise stress test. Jpn Circ J 2001; 65: 654–8

    Article  PubMed  CAS  Google Scholar 

  19. Noda T, Takaki H, Kurita T, et al. Gene-specific response of dynamic ventricular repolarization to sympathetic stimulation in LQT1, LQT2 and LQT3 forms of congenital long QT syndrome. Eur Heart J 2002; 23: 975–83

    Article  PubMed  CAS  Google Scholar 

  20. Prenylamine withdrawn in UK. Scrip 1988; 1300: 26

  21. Price-Evans DA, Mahgoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of debrisoquine oxidation in a British white population. J Med Genet 1980; 17: 102–5

    Article  Google Scholar 

  22. Daly AK. Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 2003; 17: 27–41

    Article  PubMed  CAS  Google Scholar 

  23. Dahl M-L. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002; 41: 453–70

    Article  PubMed  CAS  Google Scholar 

  24. Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999; 20: 342–9

    Article  PubMed  CAS  Google Scholar 

  25. Human Cytochrome P450 (CYP) Allele Nomenclature Committee [online]. Available from URL: http://www.imm.ki.se/CYPalleles/ [Accessed 2003 Apr 15]

  26. Dahl ML, Johansson I, Bertilsson L, et al. Ultrarapid hydroxylation of debrisoquine in a Swedish population: analysis of the molecular genetic basis. J Pharmacol Exp Ther 1995; 274: 516–20

    PubMed  CAS  Google Scholar 

  27. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  28. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58

    Article  PubMed  CAS  Google Scholar 

  29. Idle JR, Smith RL. The debrisoquine hydroxylation gene: a gene of multiple consequences. In: Lemberger L, Reidenberg MM, editors. Proceedings of the Second World Conference on Clinical Pharmacology and Therapeutics. Bethesda (MD): American Society for Pharmacology and Experimental Therapeutics, 1984: 148–64

    Google Scholar 

  30. Idle JR, Mahgoub A, Lancaster R, et al. Hypotensive response to debrisoquine and hydroxylation phenotype. Life Sci 1978; 22: 979–83

    Article  PubMed  CAS  Google Scholar 

  31. Eichelbaum M. Polymorphic oxidation of debrisoquine and sparteine. In: Kalow W, Goedde HW, Agarwal DP, editors. Ethnic differences in reactions to drugs and xenobiotics. New York: Alan R. Liss Inc., 1986: 157–67

    Google Scholar 

  32. Pollock BG, Mulsant BH, Sweet RA, et al. Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–31

    PubMed  CAS  Google Scholar 

  33. Beckmann J, Hertrampf R, Gundert-Remy U, et al. Is there a genetic factor in flecainide toxicity? Br Med J 1988; 297: 1316

    Article  CAS  Google Scholar 

  34. Shah RR, Oates NS, Idle JR, et al. Impaired oxidation of debrisoquine in patients with perhexiline-neuropathy. Br Med J 1982; 284: 295–9

    Article  CAS  Google Scholar 

  35. Morgan MY, Reshef R, Shah RR, et al. Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut 1984; 25: 1057–64

    Article  PubMed  CAS  Google Scholar 

  36. Oates NS, Shah RR, Idle JR, et al. Phenformin-induced lactic acidosis associated with impaired debrisoquine hydroxylation. Lancet 1981; I: 837–8

    Article  Google Scholar 

  37. Siddoway LA, Thompson KA, McAllister CB, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 1987; 75: 785–91

    Article  PubMed  CAS  Google Scholar 

  38. Lee JT, Kroemer HK, Silberstein DJ, et al. The role of genetically determined polymorphic drug metabolism in the beta-blockade produced by propafenone. N Engl J Med 1990; 322: 1764–9

    Article  PubMed  CAS  Google Scholar 

  39. Lennard MS, Silas JH, Freestone S, et al. Oxidation phenotype: a major determinant of metoprolol metabolism and response. N Engl J Med 1982; 307: 1558–60

    Article  PubMed  CAS  Google Scholar 

  40. Bertilsson L, Mellstrom B, Sjoqvist F, et al. Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications. Lancet 1981; I: 560–1

    Article  Google Scholar 

  41. Billon N, Funck-Brentano C, Cohen A, et al. Influence of CYP2D6 genetic polymorphism on the pharmacokinetics and pharmacodynamic effects of terikalant, a new K+ channel blocker [abstract]. Fundam Clin Pharmacol 1995; 9: 88

    Google Scholar 

  42. Gross AS, Phillips AC, Rieutord A, et al. The influence of the sparteine/debrisoquine genetic polymorphism on the disposition of dexfenfluramine. Br J Clin Pharmacol 1996; 41: 311–7

    Article  PubMed  CAS  Google Scholar 

  43. Flockhart DA, Clauw DJ, Sale EB, et al. Pharmacogenetic characteristics of the eosinophilia-myalgia syndrome. Clin Pharmacol Ther 1994; 56: 398–405

    Article  PubMed  CAS  Google Scholar 

  44. Pierce DM, Smith SE, Franklin RA. The pharmacokinetics of indoramin and 6-hydroxyindoramin in poor and extensive hydroxylators of debrisoquine. Eur J Clin Pharmacol 1987; 33: 59–65

    Article  PubMed  CAS  Google Scholar 

  45. Llerena A, Berecz R, de la Rubia A, et al. QTc interval lengthening is related to CYP2D6 hydroxylation capacity and plasma concentration of thioridazine in patients. J Psychopharmacol 2002; 16: 361–4

    Article  PubMed  CAS  Google Scholar 

  46. Poulsen L, Brosen K, Arendt-Nielsen L, et al. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 1996; 51: 289–95

    Article  PubMed  CAS  Google Scholar 

  47. Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60: 636–44

    Article  PubMed  CAS  Google Scholar 

  48. Tyndale RF, Droll KP, Sellers EM. Genetically deficient CYP2D6 metabolism provides protection against oral opiate dependence. Pharmacogenetics 1997; 7: 375–9

    Article  PubMed  CAS  Google Scholar 

  49. Winkle RA, Mason JW, Griffin JC, et al. Malignant ventricular tachyarrhythmias associated with the use of encainide. Am Heart J 1981; 102: 857–64

    Article  PubMed  CAS  Google Scholar 

  50. Dalen P, Frengell C, Dahl ML, et al. Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 1997; 19: 543–4

    Article  PubMed  CAS  Google Scholar 

  51. Dalen P, Dahl ML, Ruiz ML, et al. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444–52

    Article  PubMed  CAS  Google Scholar 

  52. Laine K, Tybring G, Hartter S, et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther 2001; 70: 327–35

    PubMed  CAS  Google Scholar 

  53. Jazwinska-Tarnawska E, Orzechowska-Juzwenko K, Niewinski P, et al. The influence of CYP2D6 polymorphism on the antiarrhythmic efficacy of propafenone in patients with paroxysmal atrial fibrillation during 3 months’ propafenone prophylactic treatment. Int J Clin Pharmacol Ther 2001; 39: 288–92

    PubMed  CAS  Google Scholar 

  54. Lima JJ, Thomason DB, Mohamed MH, et al. Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther 1999; 65: 519–25

    Article  PubMed  CAS  Google Scholar 

  55. Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999; 22: 168–70

    Article  PubMed  CAS  Google Scholar 

  56. Liggett SB, Wagoner LE, Craft LL, et al. The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998; 102: 1534–9

    Article  PubMed  CAS  Google Scholar 

  57. Brodde OE, Buscher R, Tellkamp R, et al. Blunted cardiac responses to receptor activation in subjects with Thr164Ile beta(2)-adrenoceptors. Circulation 2001; 103: 1048–50

    Article  PubMed  CAS  Google Scholar 

  58. Weizman A, Weizman R. Serotonin transporter polymorphism and response to SSRIs in major depression and relevance to anxiety disorders and substance abuse. Pharmacogenomics 2000; 1: 335–41

    Article  PubMed  CAS  Google Scholar 

  59. Smeraldi E, Zanardi R, Benedetti F, et al. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 3: 508–11

    Article  PubMed  CAS  Google Scholar 

  60. Kim DK, Lim SW, Lee S, et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport 2000; 11: 215–9

    Article  PubMed  CAS  Google Scholar 

  61. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001; 104: 569–80

    Article  PubMed  CAS  Google Scholar 

  62. Escande D. Pharmacogenetics of cardiac K+ channels. Eur J Pharmacol 2000; 410: 281–7

    Article  PubMed  CAS  Google Scholar 

  63. Fedida D, Wible B, Wang Z, et al. Identity of a novel delayed rectifier potassium current from human heart with a cloned K+ channel current. Circ Res 1993; 73: 210–6

    Article  PubMed  CAS  Google Scholar 

  64. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmias. Cell 1999; 97: 175–87

    Article  PubMed  CAS  Google Scholar 

  65. Barhanin J, Lasage F, Guillemare E, et al. KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 1996; 384: 78–80

    Article  PubMed  CAS  Google Scholar 

  66. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996; 12: 17–23

    Article  PubMed  Google Scholar 

  67. Mohler PJ, Schott J-J, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long QT cardiac arrhythmia and sudden death. Nature 2003; 421: 634–9

    Article  PubMed  CAS  Google Scholar 

  68. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med 2003; 348: 1866–74

    Article  PubMed  Google Scholar 

  69. Zareba W, Moss AJ, Locati EH, et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol 2003; 42: 103–9

    Article  PubMed  Google Scholar 

  70. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long QT syndrome genes KVLQT1, HERG, SCN5A, KCNE1 and KCNE2. Circulation 2000; 102: 1178–85

    Article  PubMed  CAS  Google Scholar 

  71. Moss AJ, Zareba W, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 2002; 105: 794–9

    Article  PubMed  CAS  Google Scholar 

  72. Bezzina CR, Verkerk AO, Busjahn A, et al. A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 2003; 59: 27–36

    Article  PubMed  CAS  Google Scholar 

  73. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392: 293–6

    Article  PubMed  CAS  Google Scholar 

  74. Bezzina C, Veldkamp MW, van Den Berg MP, et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 1999; 85: 1206–13

    Article  PubMed  CAS  Google Scholar 

  75. Kyndt F, Probst V, Potet F, et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation 2001; 104: 3081–6

    Article  PubMed  CAS  Google Scholar 

  76. Herfst LJ, Potet F, Bezzina CR, et al. Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. J Mol Cell Cardiol 2003; 35: 549–57

    Article  PubMed  CAS  Google Scholar 

  77. Veldkamp MW, Wilders R, Baartscheer A, et al. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res 2003; 92: 976–83

    Article  PubMed  CAS  Google Scholar 

  78. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res 2003; 92: 159–68

    Article  PubMed  CAS  Google Scholar 

  79. An overview of the inherited long QT syndrome and sample materials [online]. Available from URL: http://www.sads.org/LQTS.html [Accessed 2004 Jan 20]

  80. Vincent GM, Timothy KW, Leppert M, et al. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N Engl J Med 1992; 327: 846–52

    Article  PubMed  CAS  Google Scholar 

  81. Saarinen K, Swan H, Kainulainen K, et al. Molecular genetics of the long QT syndrome: two novel mutations of the KVLQT1 gene and phenotypic expression of the mutant gene in a large kindred. Hum Mutat 1998; 11: 158–65

    Article  PubMed  CAS  Google Scholar 

  82. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999; 99: 529–33

    Article  PubMed  CAS  Google Scholar 

  83. Streetman DS, Bertino Jr JS, Nafziger AN. Phenotyping of drug metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000; 10: 187–216

    Article  PubMed  CAS  Google Scholar 

  84. Shimizu W, Noda T, Takaki H, et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long QT syndrome. J Am Coll Cardiol 2003; 41: 633–42

    Article  PubMed  CAS  Google Scholar 

  85. Glassman AH, Bigger Jr JT. Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death. Am J Psychiatry 2001; 158: 1774–82

    Article  PubMed  CAS  Google Scholar 

  86. Thioridazine and severe cardiac arrhythmia. Prescrire Int 2001; 10 (56): 183–4

    Google Scholar 

  87. Hartigan-Go K, Bateman DN, Nyberg G, et al. Concentration-related pharmacodynamic effects of thioridazine and its metabolites in humans. Clin Pharmacol Ther 1996; 60: 543–53

    Article  PubMed  CAS  Google Scholar 

  88. von Bahr C, Movin G, Nordin C, et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1991; 49: 234–40

    Article  Google Scholar 

  89. Llerena A, Berecz R, de la Rubia A, et al. Use of the mesoridazine/thioridazine ratio as a marker for CYP2D6 enzyme activity. Ther Drug Monit 2000; 22: 397–401

    Article  PubMed  CAS  Google Scholar 

  90. Eap CB, Guentert TW, Schäublin-Loidl M, et al. Plasma levels of the enantiomers of thioridazine, thioridazine 2-sulfoxide, thioridazine 2-sulfone, and thioridazine 5-sulfoxide in poor and extensive metabolizers of dextromethorphan and mephenytoin. Clin Pharmacol Ther 1996; 59: 322–31

    Article  PubMed  CAS  Google Scholar 

  91. Carrillo JA, Ramos SI, Herraiz AG, et al. Pharmacokinetic interaction of fluvoxamine and thioridazine in schizophrenic patients. J Clin Psychopharmacol 1999; 19: 494–9

    Article  PubMed  CAS  Google Scholar 

  92. Meyer JW, Woggon B, Baumann P, et al. Clinical implications of slow sulphoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur J Clin Pharmacol 1990; 39: 613–4

    Article  PubMed  CAS  Google Scholar 

  93. Thanaccody R, Daly AK, Thomas SH. Influence of CYP2D6 genotype on the QTc interval and plasma concentrations of thioridazine and its metabolites in psychiatric patients taking chronic therapy [abstract]. Clin Pharmacol Ther 2003; 73: 77

    Article  Google Scholar 

  94. Wibell L. Terodiline in angina pectoris: a controlled study of a new drug. Acta Soc Med Ups 1968; 73: 75–80

    PubMed  CAS  Google Scholar 

  95. Cattini RA, Makin HL, Trafford DJ, et al. An apparent fatal overdose of terodiline. J Anal Toxicol 1989; 13: 110–2

    PubMed  CAS  Google Scholar 

  96. Davis SW, Brecker SJ, Stevenson RN. Terodiline for treating detrusor instability in elderly patients [letter]. Br Med J 1991; 302: 1276

    Article  Google Scholar 

  97. McLeod AA, Thorogood S, Barnett S. Torsade de pointes complicating treatment with terodiline [letter]. Br Med J 1991; 302: 1469

    Article  CAS  Google Scholar 

  98. Connolly MJ, Astridge PS, White EG, et al. Torsade de pointes, ventricular tachycardia and terodiline. Lancet 1991; 338: 344–5

    Article  PubMed  CAS  Google Scholar 

  99. Andrews NP, Bevan J. Torsade de pointes and terodiline. Lancet 1991; 338: 633

    Google Scholar 

  100. Committee on Safety of Medicines, London. Withdrawal of terodiline. Current Problems 1991; 32: 1–2

    Google Scholar 

  101. Hartigan-Go K, Bateman ND, Daly AK, et al. Stereoselective cardiotoxic effects of terodiline. Clin Pharmacol Ther 1996; 60: 89–98

    Article  PubMed  CAS  Google Scholar 

  102. Hallén B, Gabrielsson J, Palmér L, et al. Pharmacokinetics of R(+)-terodiline given intravenously and orally to healthy volunteers. Pharmacol Toxicol 1993; 73: 153–8

    Article  PubMed  Google Scholar 

  103. Thomas SHL, Hartigan-Go K. Disposition of R(+)- and S(−)-terodiline in healthy man [abstract]. Clin Pharmacol Ther 1996; 59: 160

    Article  Google Scholar 

  104. Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93

    PubMed  CAS  Google Scholar 

  105. Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamics of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39

    Article  PubMed  CAS  Google Scholar 

  106. Brynne N, Forslund C, Hallen B, et al. Ketoconazole inhibits the metabolism of tolterodine in subjects with deficient CYP2D6 activity. Br J Clin Pharmacol 1999; 48: 564–72

    Article  PubMed  CAS  Google Scholar 

  107. Ford GA, Wood SM, Daly AK. CYP2D6 and CYP2C19 genotypes of patients with terodiline cardiotoxicity identified through the yellow card system. Br J Clin Pharmacol 2000; 50: 77–80

    Article  PubMed  CAS  Google Scholar 

  108. Goldstein JA, Ishizaki T, Chiba K, et al. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American Black populations. Pharmacogenetics 1997; 7: 59–64

    Article  PubMed  CAS  Google Scholar 

  109. Xie HG, Stein CM, Kim RB, et al. Allelic, genotypic and phenotypic distributions of S-mephenytoin 4′-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 1999; 9: 539–49

    Article  PubMed  CAS  Google Scholar 

  110. Shah RR. Withdrawal of terodiline: a tale of two toxicities. In: Mann RD, Andrews EB, editors. Pharmacovigilance. London: John Wiley & Sons Ltd, 2002: 135–54

    Chapter  Google Scholar 

  111. Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and Smephenytoin. Clin Pharmacol Ther 1992; 51: 388–97

    Article  PubMed  CAS  Google Scholar 

  112. Tateishi T, Chida M, Ariyoshi N, et al. Analysis of the CYP2D6 gene in relation to dextromethorphan O-demethylation capacity in a Japanese population. Clin Pharmacol Ther 1999; 65: 570–5

    Article  PubMed  CAS  Google Scholar 

  113. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–43

    Article  PubMed  CAS  Google Scholar 

  114. Xie HG, Kim RB, Wood AJJ, et al. Molecular basis of ethnic differences in drug disposition and responses. Annu Rev Pharmacol Toxicol 2001; 41: 815–50

    Article  PubMed  CAS  Google Scholar 

  115. Roe CM, Odell KW, Henderson RR. Concomitant use of antipsychotics and drugs that may prolong the QT interval. J Clin Psychopharmacol 2003; 23: 197–200

    Article  PubMed  CAS  Google Scholar 

  116. Picard R, Auzepy P, Chauvin JP. Syncopes a repetition au cours d’un traitement prolonge par la prenylamine (Segontine 60) [letter]. Presse Med 1971; 79: 145

    PubMed  CAS  Google Scholar 

  117. Hashimoto K, Nakagawa Y, Nabata H, et al. In vitro analysis of Ca-antagonistic effects of prenylamine as mechanisms for its cardiac actions. Arch Int Pharmacodyn Ther 1978; 231(2): 212–21

    PubMed  CAS  Google Scholar 

  118. Bayer R, Schwarzmaier J, Pernice R. Basic mechanism underlying prenylamine-induced torsade de pointes: differences between prenylamine and fendiline due to basic actions of the isomers. Curr Med Res Opin 1988; 11: 254–72

    Article  PubMed  CAS  Google Scholar 

  119. Geitl Y, Spahn H, Knauf H, et al. Single and multiple dose pharmacokinetics of R-(−)- and S-(+)-prenylamine in man. Eur J Clin Pharmacol 1990; 38: 587–93

    Article  Google Scholar 

  120. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991; 324: 781–8

    Article  PubMed  CAS  Google Scholar 

  121. Otani K, Aoshima T. Pharmacogenetics of classical and new antipsychotic drugs. Ther Drug Monit 2000; 22: 118–21

    Article  PubMed  CAS  Google Scholar 

  122. Maginn M, Frederiksen K, Adamantidis MM, et al. The effects of sertindole and its metabolites on cardiac ion channels and action potentials [abstract]. J Physiol 2000; 525: 79P

    Google Scholar 

  123. Arnt J. Pharmacological differentiation of classical and novel antipsychotics. Int Clin Psychopharmacol 1998; 13Suppl. 3: S7–14

    Article  PubMed  Google Scholar 

  124. Eckardt L, Breithardt G, Haverkamp W. Electrophysiologic characterization of the antipsychotic drug sertindole in a rabbit heart model of torsade de pointes: low torsadogenic potential despite QT prolongation. J Pharmacol Exp Ther 2002; 300: 64–71

    Article  PubMed  CAS  Google Scholar 

  125. Toumi M, Auquier P, Francois C. The safety and tolerability of sertindole in a patient name use program [abstract]. Pharmacoepidemiol Drug Saf 2002; 11Suppl. 1: S115

    Google Scholar 

  126. Desai M, Tanus-Santos JE, Li L, et al. Pharmacokinetics and QT interval pharmacodynamics of oral haloperidol in poor and extensive metabolizers of CYP2D6. Pharmacogenomics J 2003; 3: 105–13

    Article  PubMed  CAS  Google Scholar 

  127. Makkar RR, Fromm BS, Steinman RT, et al. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 1993; 270: 2590–7

    Article  PubMed  CAS  Google Scholar 

  128. Ebert SN, Liu XK, Woosley RL. Female gender as a risk factor for drug-induced cardiac arrhythmias: evaluation of clinical and experimental evidence. J Womens Health 1998; 7: 547–57

    Article  PubMed  CAS  Google Scholar 

  129. Hara M, Danilo Jr P, Rosen MR. Effects of gonadal steroids on ventricular repolarization and on the response to E4031. J Pharmacol Exp Ther 1998; 285: 1068–72

    PubMed  CAS  Google Scholar 

  130. Lu HR, Marien R, Saels A, et al. Are there sex-specific differences in ventricular repolarization or in drug-induced early after depolarizations in isolated rabbit Purkinje fibers? J Cardiovasc Pharmacol 2000; 36: 132–9

    Article  PubMed  CAS  Google Scholar 

  131. Shuba YM, Degtiar VE, Osipenko VN, et al. Testosterone-mediated modulation of HERG blockade by proarrhythmic agents. Biochem Pharmacol 2001; 62: 41–9

    Article  PubMed  CAS  Google Scholar 

  132. Benton RE, Sale M, Flockhart DA, et al. Greater quinidine-induced QTc interval prolongation in women. Clin Pharmacol Ther 2000; 67: 413–8

    Article  PubMed  CAS  Google Scholar 

  133. Benhorin J, Moss AJ, Bak M, et al. Variable expression of long QT syndrome among gene carriers from families with five different HERG mutations. Ann Noninvasive Electrocardiol 2002; 7: 40–6

    Article  PubMed  Google Scholar 

  134. Dany F, Liozon F, Goudoud JC, et al. Severe ventricular arrhythmia following parenteral administration of vincamine. Predisposing factors in 6 cases [in French]. Arch Mal Coeur Vaiss 1980; 73: 298–306

    PubMed  CAS  Google Scholar 

  135. Stratmann HG, Kennedy HL. Torsades de pointes associated with drugs and toxins: recognition and management. Am Heart J 1987; 113: 1470–82

    Article  PubMed  CAS  Google Scholar 

  136. Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997; 96: 2778–81

    Article  PubMed  CAS  Google Scholar 

  137. Nosten F, ter Kuile FO, Luxemburger C, et al. Cardiac effects of antimalarial treatment with halofantrine. Lancet 1993; 341: 1054–6

    Article  PubMed  CAS  Google Scholar 

  138. Wesche DL, Schuster BG, Wang W-X, et al. Mechanism of cardiotoxicity of halofantrine. Clin Pharmacol Ther 2000; 67: 521–9

    Article  PubMed  CAS  Google Scholar 

  139. Monlun E, Pillet O, Cochard JF, et al. Prolonged QT interval with halofantrine. Lancet 1993; 341: 1541–2

    PubMed  CAS  Google Scholar 

  140. Castot A, Rapoport P, le Coz P. Prolonged QT interval with halofantrine. Lancet 1993, 341; 1541

    Article  PubMed  CAS  Google Scholar 

  141. Piippo K, Holmstrom S, Swan H, et al. Effect of the antimalarial drug halofantrine in the long QT syndrome due to a mutation of the cardiac sodium channel gene SCN5A. Am J Cardiol 2001; 87: 909–11

    Article  PubMed  CAS  Google Scholar 

  142. Makita N, Horie M, Nakamura T, et al. Drug-induced long QT syndrome associated with a subclinical SCN5A mutation. Circulation 2002; 106: 1269–74

    Article  PubMed  Google Scholar 

  143. Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmias. Science 2002; 297: 1333–6

    Article  PubMed  CAS  Google Scholar 

  144. Napolitano C, Schwartz PJ, Brown AM, et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J Cardiovasc Electrophysiol 2000; 11: 691–6

    Article  PubMed  CAS  Google Scholar 

  145. Koh KK, Rim MS, Yoon J, et al. Torsade de pointes by terfenadine in a patient with long QT syndrome. J Electrocardiol 1994; 27: 343–6

    Article  PubMed  CAS  Google Scholar 

  146. Haverkamp W, Eckardt L, Monnig G, et al. Clinical aspects of ventricular arrhythmias associated with QT prolongation. Eur Heart J 2001; 3(Suppl. K): K81–K88

    CAS  Google Scholar 

  147. Wysowski DK, Corken A, Gallo-Torres H, et al. Postmarketing reports of QT prolongation and ventricular arrhythmia in association with cisapride and Food and Drug Administration regulatory actions. Am J Gastroenterol 2001; 96: 1698–703

    Article  PubMed  CAS  Google Scholar 

  148. Severe cardiac arrhythmia on cisapride. Prescrire Int 2000; 9 (49): 144–5

    Google Scholar 

  149. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci USA 2000; 97: 10613–8

    Article  PubMed  CAS  Google Scholar 

  150. Yang P, Kanki H, Drolet B, et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 105: 1943–8

    Article  PubMed  CAS  Google Scholar 

  151. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction: the Survival With Oral d-Sotalol (SWORD) study. Lancet 1996; 348: 7–12

    Article  PubMed  CAS  Google Scholar 

  152. Kanki H, Yang P, Xie HG, et al. Polymorphisms in betaadrenergic receptor genes in the acquired long QT syndrome. J Cardiovasc Electrophysiol 2002; 13: 252–6

    Article  PubMed  Google Scholar 

  153. Itoh T, Kikuchi K, Odagawa Y, et al. Correlation of genetic etiology with response to beta-adrenergic blockade among symptomatic patients with familial long-QT syndrome. J Hum Genet 2001; 46: 38–40

    Article  PubMed  CAS  Google Scholar 

  154. Charbit B, Becquemont L, Lepere B, et al. Pharmacokinetic and pharmacodynamic interaction between grapefruit juice and halofantrine. Clin Pharmacol Ther 2002; 72: 514–23

    Article  PubMed  CAS  Google Scholar 

  155. Clifford CP, Adams DA, Murray S, et al. The cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice. Eur J Clin Pharmacol 1997; 52: 311–5

    Article  PubMed  CAS  Google Scholar 

  156. Kivisto KT, Lilja JJ, Backman JT, et al. Repeated consumption of grapefruit juice considerably increases plasma concentrations of cisapride. Clin Pharmacol Ther 1999; 66: 448–53

    Article  PubMed  CAS  Google Scholar 

  157. Benton RE, Honig PK, Zamani K, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59: 383–8

    Article  PubMed  CAS  Google Scholar 

  158. Tanaka E. Clinical importance of non-genetic and genetic cytochrome P450 function tests in liver disease. J Clin Pharm Ther 1998; 23: 161–70

    Article  PubMed  CAS  Google Scholar 

  159. Yang LQ, Li SJ, Cao YF, et al. Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases. World J Gastroenterol 2003; 9: 359–63

    PubMed  CAS  Google Scholar 

  160. Lanthier PL, Reshef R, Shah RR, et al. Oxidation phenotyping in alcoholics with liver disease of varying severity. Alcohol Clin Exp Res 1984; 8: 435–41

    Article  PubMed  CAS  Google Scholar 

  161. Adedoyin A, Arns PA, Richards WO, et al. Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochrome P450 2C19 and 2D6. Clin Pharmacol Ther 1998; 64: 8–17

    Article  PubMed  CAS  Google Scholar 

  162. Woosley RL, Chen Y, Freiman JP, et al. Mechanism of the cardiotoxic actions of terfenadine. JAMA 1993; 269: 1532–6

    Article  PubMed  CAS  Google Scholar 

  163. Wysowski DK, Bacsanyi J. Cisapride and fatal arrhythmia. N Engl J Med 1996; 335: 290–1

    Article  PubMed  CAS  Google Scholar 

  164. Rodriguez I, Kilborn MJ, Liu XK, et al. Drug-induced QT prolongation in women during the menstrual cycle. JAMA 2001; 285: 1322–6

    Article  PubMed  CAS  Google Scholar 

  165. Näbauer M, Kääb S. Potassium channel down-regulation in heart failure. Cardiovasc Res 1998; 37: 324–34

    Article  PubMed  Google Scholar 

  166. Priori SG. Exploring the hidden danger of noncardiac drugs. J Cardiovasc Electrophysiol 1998; 9: 1114–6

    Article  PubMed  CAS  Google Scholar 

  167. Gupta PR, Somani PN, Avasthey P, et al. Prolonged QT and hypertrophic cardiomyopathy in two families with 10 sudden deaths. J Assoc Physicians India 1985; 33: 353–5

    PubMed  CAS  Google Scholar 

  168. Martin AB, Garson Jr A, Perry JC. Prolonged QT interval in hypertrophic and dilated cardiomyopathy in children. Am Heart J 1994; 127: 64–70

    Article  PubMed  CAS  Google Scholar 

  169. Peters S, Rust H, Trummel M, et al. Familial hypertrophic cardiomyopathy associated with prolongation of the QT interval. Z Kardiol 2000; 89: 624–9

    Article  PubMed  CAS  Google Scholar 

  170. Kaab S, Dixon J, Duc J, et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 1998; 98: 1383–93

    Article  PubMed  CAS  Google Scholar 

  171. Schwartz PJ, Wolf S. QT interval prolongation as predictor of sudden death in patients with myocardial infarction. Circulation 1978; 57: 1074–7

    Article  PubMed  CAS  Google Scholar 

  172. Schwartz PJ, Stramba-Badiale M, Segantini A, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med 1998; 338: 1709–14

    Article  PubMed  CAS  Google Scholar 

  173. Veglio M, Sivieri R, Chinaglia A, et al. QT interval prolongation and mortality in type 1 diabetic patients: a 5-year cohort prospective study: Neuropathy Study Group of the Italian Society of the Study of Diabetes, Piemonte Affiliate. Diabetes Care 2000; 23: 1381–3

    Article  PubMed  CAS  Google Scholar 

  174. Whitsel EA, Boyko EJ, Siscovick DS. Reassessing the role of QTc in the diagnosis of autonomic failure among patients with diabetes: a meta-analysis. Diabetes Care 2000; 23: 241–7

    Article  PubMed  CAS  Google Scholar 

  175. Rossing P, Breum L, Major-Pedersen A, et al. Prolonged QTc interval predicts mortality in patients with type 1 diabetes mellitus. Diabet Med 2001; 18: 199–205

    Article  PubMed  CAS  Google Scholar 

  176. Marques JL, George E, Peacey SR, et al. Altered ventricular repolarization during hypoglycaemia in patients with diabetes. Diabet Med 1997; 14: 648–54

    Article  PubMed  CAS  Google Scholar 

  177. Bernardi M, Calandra S, Colantoni A, et al. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology 1998; 27: 28–34

    Article  PubMed  CAS  Google Scholar 

  178. Choy AM, Lang CC, Roden DM, et al. Abnormalities of the QT interval in primary disorders of autonomic failure. Am Heart J 1998; 136: 664–71

    Article  PubMed  CAS  Google Scholar 

  179. Ishizaki F, Harada T, Yoshinaga H, et al. Prolonged QTc intervals in Parkinson’s disease: relation to sudden death and autonomic dysfunction [in Japanese]. No To Shinkei 1996; 48: 443–8

    PubMed  CAS  Google Scholar 

  180. Kocheril AG, Bokhari SA, Batsford WP, et al. Long QTc and torsades de pointes in human immunodeficiency virus disease. Pacing Clin Electrophysiol 1997; 20: 2810–6

    Article  PubMed  CAS  Google Scholar 

  181. Murata M, Tamai I, Sai Y, et al. Hepatobiliary transport kinetics of HSR-903, a new quinolone antibacterial agent. Drug Metab Dispos 1998; 26: 1113–9

    PubMed  CAS  Google Scholar 

  182. Bertino Jr JS, Owens Jr RC, Carnes TD, et al. Gatifloxacin-associated corrected QT interval prolongation, TdP, and ventricular fibrillation in patients with known risk factors. Clin Infect Dis 2002; 34: 861–3

    Article  PubMed  Google Scholar 

  183. Rubinstein E, Camm J. Cardiotoxicity of fluoroquinolones. J Antimicrob Chemother 2002; 49: 593–6

    Article  PubMed  CAS  Google Scholar 

  184. Frothingham R. Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin and moxifloxacin. Pharmacotherapy 2001; 21: 1468–72

    Article  PubMed  CAS  Google Scholar 

  185. Curtis LH, Ostbye T, Sendersky V, et al. Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am J Med 2003; 114: 135–41

    Article  PubMed  CAS  Google Scholar 

  186. Note for Guidance on the Investigation of Drug Interactions (CPMP/EWP/560/95). Committee for Proprietary Medicinal Products, London, 1997 Dec. Available from URL: http://www.emea.eu.int/htms/human/ewp/ewpfin.htm [Accessed 2003 Apr 15]

  187. Abel S, Nichols DJ, Brearley CJ, et al. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol 2000; 49: 64–71

    Article  PubMed  CAS  Google Scholar 

  188. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14

    Article  PubMed  CAS  Google Scholar 

  189. Zhang L, Dresser MJ, Gray AT, et al. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 1997; 51: 913–21

    PubMed  CAS  Google Scholar 

  190. Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human mdr1 drug transporter. Annu Rev Pharmacol Toxicol 2003; 43: 285–307

    Article  PubMed  CAS  Google Scholar 

  191. Tirona RG, Leake BF, Merino G, et al. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 2001; 276: 35669–75

    Article  PubMed  CAS  Google Scholar 

  192. Nozawa T, Nakajima M, Tamai I, et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther 2002; 302: 804–13

    Article  PubMed  CAS  Google Scholar 

  193. Fulop G, Phillips RA, Shapiro AK, et al. ECG changes during haloperidol and pimozide treatment of Tourette’s disorder. Am J Psychiatry 1987; 144: 673–5

    PubMed  CAS  Google Scholar 

  194. Craft TM. Torsade de pointes after astemizole overdose [letter]. Br Med J (Clin Res Ed) 1986; 292: 660

    Article  CAS  Google Scholar 

  195. Zhou Z, Volperian VR, Gong Q, et al. Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J Cardiovasc Electrophysiol 1999; 10: 836–43

    Article  PubMed  CAS  Google Scholar 

  196. Cardiotoxicity of astemizole in overdose: dosing is critical. Committee on Safety of Medicines. London: Current Problems, 1987 Mar; 19: 1–2

  197. Cross J, Lee H, Westelinck A, et al. Postmarketing drug dosage changes of 499 FDA-approved new molecular entities, 1980-1999. Pharmacoepidemiol Drug Saf 2002; 11: 439–46

    Article  PubMed  Google Scholar 

  198. Cohen JS. Dose discrepancies between the Physicians’ Desk Reference and the medical literature, and their possible role in the high incidence of dose-related adverse drug events. Arch Intern Med 2001; 161: 957–64

    Article  PubMed  CAS  Google Scholar 

  199. Guidance on Pharmacokinetic Studies in Man (Eudra/C/87/013). In: The rules governing medicinal products in the European Union EudraLex. Vol. 3C. Guidelines-efficacy; Luxembourg: Office for Official Publications of the European Communities, 1998: 99 [online]. Available from URL: http://pharmacos.eudra.org/F2/eudralex/vol-3/pdfs-en/3cc3aen.pdf [Accessed 2003 Apr 15]

  200. Note for Guidance on Ethnic Factors in the Acceptability of Foreign Clinical Data. (CPMP/ICH/289/95) Committee for Proprietary Medicinal Products, London, March 1998 [online]. Available from URL: http://www.emea.eu.int/htms/human/ich/efficacy/ichfin.htm [Accessed 2003 Apr 15]

  201. Note for Guidance on the Investigation of Bioavailability and Bioequivalence (CPMP/EWP/QWP/1401/98). Committee for Proprietary Medicinal Products, London, 2001 Jul [online]. Available from URL: http://www.emea.eu.int/htms/human/ewp/ewpfin.htm [Accessed 2003 Apr 15]

  202. Guidance Note on Drug Metabolism/Drug Interaction Studies in the Drug Development Process. Studies in vitro. Food and Drug Administration Apr 1997 [online]. Available from URL: http://www.fda.gov/cder/guidance/index.htm [Accessed 2003 Apr 15]

  203. Clinical pharmacokinetic studies of pharmaceuticals. Tokyo, Japan: Ministry of Health, Labour and Welfare, 2001 Jun

  204. Methods of drug interaction studies. Tokyo, Japan: Ministry of Health, Labour and Welfare, 2001 Jun

  205. Kaneko A, Lum JK, Yaviong L, et al. High and variable frequencies of CYP2C19 mutations: medical consequences of poor drug metabolism in Vanuatu and other Pacific islands. Pharmacogenetics 1999; 9: 581–90

    Article  PubMed  CAS  Google Scholar 

  206. Iwasa H, Itoh T, Nagai R, et al. Twenty single nucleotide polymorphisms (SNPs) and their allelic frequencies in four genes that are responsible for familial long QT syndrome in the Japanese population. J Hum Genet 2000; 45: 182–3

    Article  PubMed  CAS  Google Scholar 

  207. Iwasa H, Kurabayashi M, Nagai R, et al. Multiple single-nucleotide polymorphisms (SNPs) in the Japanese population in six candidate genes for long QT syndrome. J Hum Genet 2001; 46: 158–62

    Article  PubMed  CAS  Google Scholar 

  208. Iwasa H, Kurabayashi M, Nagai R, et al. Twenty single-nucleotide polymorphisms in four genes encoding cardiac ion channels. J Hum Genet 2002; 47: 208–12

    Article  PubMed  CAS  Google Scholar 

  209. Hiraoka M. Inherited arrhythmic disorders in Japan. J Cardiovasc Electrophysiol 2003; 14: 431–4

    Article  PubMed  Google Scholar 

  210. Fukushige T, Yoshinaga M, Shimago A, et al. Effect of age and overweight on the QT interval and the prevalence of long QT syndrome in children. Am J Cardiol 2002; 89: 395–8

    Article  PubMed  Google Scholar 

  211. Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet 2000; 356: 1667–71

    Article  PubMed  CAS  Google Scholar 

  212. Sallustio BC, Westley IS, Morris RG. Pharmacokinetics of the antianginal agent perhexiline: relationship between metabolic ratio and steady-state dose. Br J Clin Pharmacol 2002; 54: 107–14

    Article  PubMed  CAS  Google Scholar 

  213. Hiratsuka M. Development of simplified and rapid detection assay for genetic polymorphisms influencing drug response and its clinical applications. [in Japanese] Yakugaku Zasshi 2002; 122: 451–63

    Article  PubMed  CAS  Google Scholar 

  214. Verstuyft C, Morin S, Yang J, et al. Rapid and robust genotyping strategy for cytochrome P450 2C9 and MDR1 single nucleotide polymorphisms identification [in French]. Ann Biol Clin (Paris) 2003; 61: 305–9

    CAS  Google Scholar 

  215. Jongbloed R, Marcelis C, Velter C, et al. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome. Hum Mutat 2002; 20: 382–91

    Article  PubMed  CAS  Google Scholar 

  216. Murphy MP. Current pharmacogenomic approaches to clinical drug development. Pharmacogenomics 2000; 1: 115–23

    Article  PubMed  CAS  Google Scholar 

  217. Murphy MP, Beaman ME, Clark LS, et al. Prospective CYP2D6 genotyping as an exclusion criterion for enrollment of a phase III clinical trial [published erratum appears in Pharmacogenetics 2001; 11: 185]. Pharmacogenetics 2000; 10: 583–90

    Article  PubMed  CAS  Google Scholar 

  218. Raschetti R, Maggini M, Da Cas R, et al. Time trends in the coprescribing of cisapride and contraindicated drugs in Umbria, Italy. JAMA 2001; 285: 1840–1

    Article  PubMed  CAS  Google Scholar 

  219. Smalley W, Shatin D, Wysowski DK, et al. Contraindicated use of cisapride: impact of Food and Drug Administration regulatory action. JAMA 2000; 284: 3036–9

    Article  PubMed  CAS  Google Scholar 

  220. Krasucki C, McFarlane F. Electrocardiograms, high-dose antipsychotic treatment and College guidelines. Psychiatric Bull 1996; 20: 326–30

    Article  Google Scholar 

Download references

Acknowledgments

The views expressed in this paper are those of the author and do not necessarily represent the views or the opinions of Medicines and Healthcare products Regulatory Agency, other regulatory authorities or any of their advisory committees.

The author has not received any funding from any source in the preparation of this manuscript. There are no conflicts of interest directly relevant to the contents of this review.

The author would like to thank Professor Joel Morganroth (PA, USA) and Professor David Goldstein (London, UK) for their very helpful and constructive comments during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi R. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, R.R. Pharmacogenetic Aspects of Drug-Induced Torsade de Pointes. Drug-Safety 27, 145–172 (2004). https://doi.org/10.2165/00002018-200427030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200427030-00001

Keywords

Navigation