Pneumologie 2014; 68(08): 532-541
DOI: 10.1055/s-0034-1365742
Serie: Intensiv- und Beatmungsmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Monitoring des Beatmungspatienten

Monitoring of Patients Receiving Mechanical Ventilation
J. H. Storre
1   Lungenklinik Köln-Merheim, Kliniken der Stadt Köln gGmbH, Lehrkrankenhaus der Universität Witten/Herdecke, Köln
,
D. Dellweg
2   Fachkrankenhaus Kloster Grafschaft GmbH, Lehrkrankenhaus der Philipps-Universität Marburg, Schmallenberg
› Author Affiliations

Subject Editor: W. Windisch, Köln
Further Information

Publication History

Publication Date:
09 July 2014 (online)

Zusammenfassung

Die Überwachung eines beatmungspflichtigen Patienten erfolgt in der Regel auf einer Intensivstation und stellt eine Herausforderung für das gesamte medizinische Personal dar. Es ist zunächst entscheidend, die pathophysiologischen Zusammenhänge der zugrunde liegenden Erkrankung zu verstehen, um die Patienten sicher überwachen und therapieren zu können. Neben der Beobachtung wichtiger klinischer Zeichen stehen in der modernen Medizin verschiedene apparative Verfahren für das Monitoring zur Verfügung. Die diagnostischen Möglichkeiten schließen dabei sowohl invasive als auch nichtinvasive Verfahren ein. Darüber hinaus ist es unverzichtbar, Zusammenhänge zwischen dem Sauerstoffangebot, dem Sauerstoffverbrauch sowie der atemmuskulären Belastung während der Beatmung zu verstehen. Der vorliegende Artikel beschreibt diese Hintergründe und stellt die wichtigsten diagnostischen Verfahren vor, welche im Rahmen der Überwachung beatmeter Patienten eingesetzt werden können.

Abstract

Patients undergoing mechanical ventilation are usually treated in the intensive care unit. Monitoring of these patients is challenging for all members of the medical staff. Understanding the aetiology of respiratory failure as well as the pathophysiological principles is essential for appropriate monitoring and treatment. Besides observation of clinical signs, different monitoring methods have become available including invasive and non-invasive diagnostic tools. Furthermore, knowledge about oxygen supply and oxygen consumption as well as respiratory muscle capacities and workload is important. The current article presents an overview of these issues and evaluates different diagnostic tools to monitor ventilator-dependent patients.

 
  • Literatur

  • 1 Kabitz H, Windisch W. Diagnostik der Atemmuskelfunktion: state of the art. Pneumologie 2007; 61: 582-587
  • 2 Windisch W. Pathophysiologie der Atemmuskelschwäche. Pneumologie 2008; 62 (Suppl. 01) S18-S22
  • 3 Schönhofer B, Kuhlen R, Neumann P et al. Nichtinvasive Beatmung als Therapie der akuten respiratorischen Insuffizienz. Pneumologie 2008; 62: 449-479
  • 4 Windisch W, Brambring J, Budweiser S et al. Nichtinvasive und invasive Beatmung als Therapie der chronischen respiratorischen Insuffizienz. S2-Leitlinie herausgegeben von der Deutschen Gesellschaft fur Pneumologie und Beatmungsmedizin e. V. Pneumologie 2010; 64: 207-240
  • 5 Severinghaus JW. The invention and development of blood gas analysis apparatus. Anesthesiology 2002; 97: 253-256
  • 6 Storre JH, Steurer B, Kabitz H et al. Transcutaneous PCO2 monitoring during initiation of noninvasive ventilation. Chest 2007; 132: 1810-1816
  • 7 Zavorsky GS, Cao J, Mayo NE et al. Arterial versus capillary blood gases: a meta-analysis. Respiratory physiology and neurobiology 2007; 155: 268-279
  • 8 Storre JH, Magnet FS, Dreher M et al. Transcutaneous monitoring as a replacement for arterial PCO2 monitoring during nocturnal non-invasive ventilation. Respiratory medicine 2011; 105: 143-150
  • 9 Storre JH. Monitoring der Ventilation bei nächtlicher nichtinvasiver Beatmung. Habilitationsschrift der Medizinischen Universitätsklinik der Albert-Ludwigs-Universität. Freiburg im Breisgau: 2011
  • 10 Pitkin AD, Roberts CM, Wedzicha JA. Arterialised earlobe blood gas analysis: an underused technique. Thorax 1994; 49: 364-366
  • 11 Magnussen H, Kirsten A, Kohler D et al. Leitlinien zur Langzeit-Sauerstofftherapie. Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e. V. Pneumologie 2008; 62: 748-756
  • 12 Severinghaus JW, Astrup P, Murray JF. Blood gas analysis and critical care medicine. Am J Respir Crit Care Med 1998; 157: S114-S122
  • 13 Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesthesia and Analgesia 2007; 105: S48-S52
  • 14 Paiva R, Krivec U, Aubertin G et al. Carbon dioxide monitoring during long-term noninvasive respiratory support in children. Intensive Care Med 2009; 35: 1068-1074
  • 15 Chhajed PN, Heuss LT, Tamm M. Cutaneous carbon dioxide monitoring in adults. Curr Opin Anaesthesiol 2004; 17: 521-525
  • 16 Cuvelier A, Grigoriu B, Molano LC et al. Limitations of transcutaneous carbon dioxide measurements for assessing long-term mechanical ventilation. Chest 2005; 127: 1744-1748
  • 17 Cox M, Kemp R, Anwar S et al. Non-invasive monitoring of CO2 levels in patients using NIV for AECOPD. Thorax 2006; 61: 363-364
  • 18 Belpomme V, Ricard-Hibon A, Devoir C et al. Correlation of arterial PCO2 and PETCO2 in prehospital controlled ventilation. Am J Emerg Med 2005; 23: 852-859
  • 19 Yamanaka MK, Sue DY. Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest 1987; 92: 832-835
  • 20 Sanders MH, Kern NB, Costantino JP et al. Accuracy of end-tidal and transcutaneous PCO2 monitoring during sleep. Chest 1994; 106: 472-483
  • 21 Hinkelbein J, Floss F, Denz C et al. Accuracy and precision of three different methods to determine Pco2 (Paco2 vs. Petco2 vs. Ptcco2) during interhospital ground transport of critically ill and ventilated adults. J Trauma 2008; 65: 10-18
  • 22 Wilson J, Russo P, Russo J et al. Noninvasive monitoring of carbon dioxide in infants and children with congenital heart disease: end-tidal versus transcutaneous techniques. J Intensive Care Med 2005; 20: 291-295
  • 23 Morgan AP. The pulmonary toxicity of oxygen. Anesthesiology 1969; 30: 587-588
  • 24 Nichols CW, Lambertsen C. Effects of high oxygen pressures on the eye. N Engl J Med 1969; 281: 25-30
  • 25 Smith JL. The pathological effects due to increase of oxygen tension in the air breathed. J Physiol 1899; 24: 19-35
  • 26 Köhler D, Dellweg D. Polyglobulie. Dtsch Med Wochenschr 2010; 135: 2300-2303
  • 27 Zander R. Die kritischen Grenzen der Hamodilution: Theoretische Grundlagen. Beitr Infusionsth 1993; 29: 51-69
  • 28 Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med 1987; 13: 223-229
  • 29 Mitsuoka M, Kinninger KH, Johnson FW et al. Utility of measurements of oxygen cost of breathing in predicting success or failure in trials of reduced mechanical ventilatory support. Respir Care 2001; 46: 902-910
  • 30 Bellani G, Foti G, Spagnolli E et al. Increase of oxygen consumption during a progressive decrease of ventilatory support is lower in patients failing the trial in comparison with those who succeed. Anesthesiology 2010; 113: 378-385
  • 31 Cain SM, Chapler CK. Effects of norepinephrine and alpha-block on O2 uptake and blood flow in dog hindlimb. J Appl Physiol 1981; 51: 1245-1250
  • 32 Field S, Sanci S, Grassino A. Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol 1984; 57: 44-51
  • 33 Campbell EE, Newsom DavisJ. The respiratory muscles, mechanics and neural control, second ed. London: 1970
  • 34 Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991; 324: 1445-1450
  • 35 Dellweg D, Haidl P, Siemon K et al. Impact of breathing pattern on work of breathing in healthy subjects and patients with COPD. Respir Physiol Neurobiol 2008; 161: 197-200
  • 36 Puddy A, Patrick W, Webster K et al. Respiratory control during volume-cycled ventilation in normal humans. J Appl Physiol 1996; 80: 1749-1758
  • 37 Laghi F, Segal J, Choe WK et al. Effect of imposed inflation time on respiratory frequency and hyperinflation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163: 1365-1370
  • 38 Georgopoulos D, Mitrouska I, Webster K et al. Effects of inspiratory muscle unloading on the response of respiratory motor output to CO2. Am J Respir Crit Care Med 1997; 155: 2000-2009
  • 39 Sassoon CS. Triggering of the ventilator in patient-ventilator interactions. Respir Care 2011; 56: 39-51
  • 40 Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 1997; 155: 906-915
  • 41 Sassoon CSH, Caiozzo VJ, Manka A et al. Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol 2002; 92: 2585-2595
  • 42 Levine S, Nguyen T, Taylor N et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358: 1327-1335
  • 43 Reid WD, Belcastro AN. Chronic resistive loading induces diaphragm injury and ventilatory failure in the hamster. Respir Physiol 1999; 118: 203-218
  • 44 Jubran A, Van de Graaff WB, Tobin MJ. Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995; 152: 129-136
  • 45 Leung P, Jubran A, Tobin MJ. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 1997; 155: 1940-1948
  • 46 Nava S, Bruschi C, Fracchia C et al. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 1997; 10: 177-183
  • 47 Van de Graaff WB, Gordey K, Dornseif SE et al. Pressure support. Changes in ventilatory pattern and components of the work of breathing. Chest 1991; 100: 1082-1089
  • 48 Fauroux B, Hart N, Luo YM et al. Measurement of diaphragm loading during pressure support ventilation. Intensive Care Med 2003; 29: 1960-1966
  • 49 ARDS Network Trial. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342: 1301-1308
  • 50 Brower RG, Lanken PN, MacIntyre N et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351: 327-336
  • 51 Meade MO, Cook DJ, Guyatt GH et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299: 637-645
  • 52 Mercat A, Richard JM, Vielle B et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299: 646-655
  • 53 Talmor D, Sarge T, Malhotra A et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359: 2095-2104
  • 54 Crescimanno G, Canino M, Marrone O. Asynchronies and sleep disruption in neuromuscular patients under home mechanical ventilation. Respir Med 2012; 106: 1478-1485
  • 55 Nilsestuen JO, Hargett KD. Using ventilator graphics to identify patient-ventilator asynchrony. Respir Care 2005; 50: 202-234