Aktuelle Neurologie 2012; 39(03): 127-134
DOI: 10.1055/s-0031-1301298
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Hirnsonografie, Riechtestung und motorische Testverfahren in der Frühdiagnose des idiopathischen Parkinson-Syndroms

Brain Sonography, Olfactory And Motor Function Assessment For The Early Diagnosis Of Idiopathic Parkinson’s Disease
U. Walter
1   Klinik und Poliklinik für Neurologie, Universität Rostock
,
J. Klucken
2   Abteilung für Molekulare Neurologie, Universitätsklinikum Erlangen
,
R. Benecke
1   Klinik und Poliklinik für Neurologie, Universität Rostock
,
J. Winkler
2   Abteilung für Molekulare Neurologie, Universitätsklinikum Erlangen
› Author Affiliations
Further Information

Publication History

Publication Date:
13 February 2012 (online)

Zusammenfassung

Die frühe Diagnosestellung des idiopathischen Parkinson-Syndroms, möglichst bereits in prämotorischen Krankheitsstadien, verspricht einen größeren Nutzen aufkommender neuroprotektiver Therapien. Während genetische, biochemische, nuklearmedizinische und andere spezielle bildgebende Methoden ihren besonderen Stellenwert in der Erhärtung der Diagnose einer vermuteten prämotorischen Parkinsonkrankheit haben, bieten sich zum breiten Screening von Risikopopulationen kostengünstigere, nichtinvasive Verfahren an. Der vorliegende Artikel gibt einen Überblick über die bisherige Studienlage und eigene Ergebnisse zum Einsatz der transkraniellen Hirnsonografie, der Riechprüfung und motorischer Tests einschließlich ihrer Kombination zur Detektion von Individuen mit einem erhöhtes Risiko einer späteren Parkinsonkrankheit.

Abstract

The early diagnosis of idiopathic Parkinson’s disease, preferably already at premotor disease stages, promises a greater benefit of upcoming neuroprotective therapies. While genetic, biochemical, radiotracer and other specialised imaging methods have their specific place value in the diagnostic confirmation of a suspected premotor Parkinson’s disease, for the broad screening of risk populations non-invasive, low-cost diagnostic methods are more suitable. The present article gives an overview on the results of recently published studies and of our own investigations on the use of transcranial brain sonography, olfactory testing and motor assessment tools including their combined use for the detection of individuals at high risk for the later development of Parkinson’s disease.

 
  • Literatur

  • 1 Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79: 368-376
  • 2 Warner TT, Schapira AH. Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 2003; 53 (Suppl. 03) S16-S23
  • 3 Le W, Chen S, Jankovic J. Etiopathogenesis of Parkinson Disease: A New Beginning?. Neuroscientist 2009; 15: 28-35
  • 4 Braak H, Bohl JR, Müller CM et al. Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 2006; 21: 2042-2051
  • 5 Hughes AJ, Daniel SE, Kilford L et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181-184
  • 6 Bernheimer H, Birkmayer W, Hornykiewicz O et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973; 20: 415-455
  • 7 Riederer P, Wuketich S. Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 1976; 38: 277-301
  • 8 Lees AJ. The Parkinson chimera. Neurology 2009; 72 (Suppl) S2-S11
  • 9 de la Fuente-Fernández R, Schulzer M, Mak E et al. Trials of neuroprotective therapies for Parkinson’s disease: problems and limitations. Parkinsonism Relat Disord 2010; 16: 365-369
  • 10 Rascol O, Fitzer-Attas CJ, Hauser R et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes. Lancet Neurol 2011; 10: 415-423
  • 11 Gerlach M, Hendrich A, Hueber R et al. Early detection of Parkinson’s disease: unmet needs. Neurodegener Dis 2008; 5: 137-139
  • 12 Antoniades CA, Barker RA. The search for biomarkers in Parkinson‘s disease: a critical review. Expert Rev Neurother 2008; 8: 1841-1852
  • 13 Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol 2008; 7: 1044-1055
  • 14 Haehner A, Hummel T, Hummel C et al. Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord 2007; 22: 839-842
  • 15 Mirelman A, Gurevich T, Giladi N et al. Gait alterations in healthy carriers of the LRRK2 G2019S mutation. Ann Neurol 2011; 69: 193-197
  • 16 Walter U, Kanowski M, Kaufmann J et al. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage 2008; 40: 551-558
  • 17 Becker G, Seufert J, Bogdahn U et al. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 1995; 45: 182-184
  • 18 Berg D, Siefker C, Becker G. Echogenicity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J Neurol 2001; 8: 684-689
  • 19 Walter U, Niehaus L, Probst T et al. Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 2003; 60: 74-77
  • 20 Walter U, Dressler D, Wolters A et al. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology 2004; 63: 504-509
  • 21 Naumann M, Becker G, Toyka KV et al. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology 1996; 47: 1284-1290
  • 22 Postert T, Lack B, Kuhn W et al. Basal ganglia alterations and brain atrophy in Huntington’s disease depicted by transcranial real time sonography. J Neurol Neurosurg Psychiatry 1999; 67: 457-462
  • 23 Walter U, Dressler D, Benecke R. Hirnparenchym-Sonographie zur Früh- und Differenzialdiagnostik der Parkinsonkrankheit. Akt Neurol 2004; 31: 325-332
  • 24 Berg D. Transcranial ultrasound as a risk marker for Parkinson’s disease. Mov Disord 2009; 24 (Suppl. 02) S677-S683
  • 25 Walter U. Transcranial brain sonography findings in Parkinson’s disease: implications for pathogenesis, early diagnosis and therapy. Expert Rev Neurother 2009; 9: 835-846
  • 26 Berg D, Becker G, Zeiler B et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 1999; 53: 1026-1031
  • 27 Berg D, Siefker C, Ruprecht-Dorfler P et al. Relationship of substantia nigra echogenicity and motor function in elderly subjects. Neurology 2001; 56: 13-17
  • 28 Berg D, Jabs B, Merschdorf U et al. Echogenicity of substantia nigra determined by transcranial ultrasound correlates with severity of parkinsonian symptoms induced by neuroleptic therapy. Biol Psychiatry 2001; 50: 463-467
  • 29 Walter U, Wittstock M, Benecke R et al. Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J Neural Transm 2002; 109: 191-196
  • 30 Glaser M, Weber U, Hinrichs H et al. Transkranielle Sonographie des Mittelhirns mit verschiedenen Ultraschallsystemen. Klin Neurophysiol 2006; 37: 165-168
  • 31 van de Loo S, Walter U, Behnke S et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 81: 1087-1092
  • 32 Stockner H, Sojer M, KS K et al. Midbrain sonography in patients with essential tremor. Mov Disord 2007; 22: 414-417
  • 33 Fedotova EIu, Chechetkin AO, Shadrina MI et al. Transcranial sonography in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2011; 111: 49-55
  • 34 Huang YW, Jeng JS, Tsai CF et al. Transcranial imaging of substantia nigra hyperechogenicity in a Taiwanese cohort of Parkinson’s disease. Mov Disord 2007; 22: 550-555
  • 35 Mehnert S, Reuter I, Schepp K et al. Transcranial sonography for diagnosis of Parkinson’s disease. BMC Neurol 2010; 10: 9
  • 36 Hagenah JM, König IR, Becker B et al. Substantia nigra hyperechogenicity correlates with clinical status and number of Parkin mutated alleles. J Neurol 2007; 254: 1407-1413
  • 37 Go CL, Frenzel A, Rosales RL et al. Assessment of substantia nigra echogenicity in German and Filipino population using a portable ultrasound system. J Ultrasound Med 2012; 31: 191-196
  • 38 Walter U, Dressler D, Probst T et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol 2007; 64: 1635-1640
  • 39 Walter U, Hoeppner J, Prudente-Morrissey L et al. Parkinson’s disease-like midbrain sonography abnormalities are frequent in depressive disorders. Brain 2007; 130: 1799-1807
  • 40 Walter U, Klein C, Hilker R et al. Brain parenchyma sonography detects preclinical parkinsonism. Mov Disord 2004; 19: 1445-1449
  • 41 Ruprecht-Dörfler P, Klotz P, Becker G et al. Substantia nigra hyperechogenicity correlates with subtle motor dysfunction in tap dancers. Parkinsonism Relat Disord 2007; 13: 362-364
  • 42 Hoeppner J, Prudente-Morrissey L, Herpertz SC et al. Substantia nigra hyperechogenicity in depressive subjects relates to motor asymmetry and impaired word fluency. Eur Arch Psychiatry Clin Neurosci 2009; 259: 92-97
  • 43 Berg D, Seppi K, Liepelt I et al. Enlarged hyperechogenic substantia nigra is related to motor performance and olfaction in the elderly. Mov Disord 2010; 25: 1464-1469
  • 44 Sommer U, Hummel T, Cormann K et al. Detection of presymptomatic Parkinson’s disease: combining smell tests, transcranial sonography, and SPECT. Mov Disord 2004; 19: 1196-1202
  • 45 Ruprecht-Dörfler P, Berg D, Tucha O et al. Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson’s disease. Neuroimage 2003; 18: 416-422
  • 46 Unger MM, Möller JC, Stiasny-Kolster K et al. Assessment of idiopathic rapid-eye-movement sleep behavior disorder by transcranial sonography, olfactory function test, and FP-CIT-SPECT. Mov Disord 2008; 23: 596-599
  • 47 Berg D, Seppi K, Behnke S et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Arch Neurol 2011; 68: 932-937
  • 48 Iranzo A, Lomeña F, Stockner H et al. Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study. Lancet Neurol 2010; 9: 1070-1077
  • 49 Walter U. Substantia nigra hyperechogenicity is a risk marker of Parkinson’s disease: no. J Neural Transm 2011; 118: 607-612
  • 50 Fahn S, Elton RL. Members of the UPDRS Development Committee . Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M. et al. Hrsg Recent developments in Parkinson’s disease II. New York: Macmillan; 1987: 153-163
  • 51 Goetz CG, Tilley BC, Shaftman SR et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008; 23: 2129-2170
  • 52 Zampieri C, Salarian A, Carlson-Kuhta P et al. The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 81: 171-176
  • 53 Haehner A, Hummel T, Hummel C et al. Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord 2007; 22: 839-842
  • 54 Double KL, Rowe DB, Hayes M et al. Identifying the pattern of olfactory deficits in Parkinson disease using the brief smell identification test. Arch Neurol 2003; 60: 545-549
  • 55 Haehner A, Boesveldt S, Berendse HW et al. Prevalence of smell loss in Parkinson’s disease-a multicenter study. Parkinsonism Relat Disord 2009; 15: 490-494
  • 56 Herting B, Schulze S, Reichmann H et al. A longitudinal study of olfactory function in patients with idiopathic Parkinson’s disease. J Neurol 2008; 255: 367-370
  • 57 Gaenslen A, Swid I, Liepelt-Scarfone I et al. The patients’ perception of prodromal symptoms before the initial diagnosis of Parkinson’s disease. Mov Disord 2011; 26: 653-658
  • 58 Ross GW, Petrovitch H, Abbott RD et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 2008; 63: 167-173
  • 59 McKinnon JH, Demaerschalk BM, Caviness JN et al. Sniffing out Parkinson disease: can olfactory testing differentiate parkinsonian disorders?. Neurologist 2007; 13: 382-385
  • 60 Busse K, Heilmann R, Kleinschmidt S et al. Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J Neurol Neurosurg Psychiatry (im Druck)
  • 61 Ponsen MM, Stoffers D, Wolters ECh et al. Olfactory testing combined with dopamine transporter imaging as a method to detect prodromal Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 81: 396-399
  • 62 Postuma RB, Gagnon JF, Vendette M et al. Olfaction and color vision identify impending neurodegeneration in rapid eye movement sleep behavior disorder. Ann Neurol 2011; 69: 811-818
  • 63 Stiasny-Kolster K, Doerr Y, Möller JC et al. Combination of ‘idiopathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 2005; 128: 126-137
  • 64 Hummel T, Konnerth CG, Rosenheim K et al. Screening of olfactory function with a four-minute odor identification test: reliability, normative data, and investigations in patients with olfactory loss. Ann Otol Rhinol Laryngol 2001; 110: 976-981
  • 65 Hummel T, Kobal G, Gudziol H et al. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 2007; 264: 237-243
  • 66 Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav 1984; 32: 489-502
  • 67 Barz S, Hummel T, Pauli E et al. Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson’s disease. Neurology 1997; 49: 1424-1431
  • 68 Hummel T, Witt M, Reichmann H et al. Immunohistochemical, volumetric, and functional neuroimaging studies in patients with idiopathic Parkinson’s disease. J Neurol Sci 2010; 289: 119-122
  • 69 Scherfler C, Schocke MF, Seppi K et al. Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain 2006; 129: 538-542
  • 70 Moessnang C, Frank G, Bogdahn U et al. Altered activation patterns within the olfactory network in Parkinson’s disease. Cereb Cortex 2011; 21: 1246-1253
  • 71 Stern MB, Siderowf A. Parkinson’s at risk syndrome: can Parkinson’s disease be predicted?. Mov Disord 2010; 25 (Suppl. 01) S89-S93
  • 72 Post B, Merkus MP, de Haan RJ et al. Prognostic factors for the progression of Parkinson’s disease: a systematic review. Mov Disord 2007; 22: 1839-1851
  • 73 Richards M, Marder K, Cote L et al. Interrater reliability of the Unified Parkinson’s Disease Rating Scale motor examination. Mov Disord 1994; 9: 89-91
  • 74 Cancela J, Pansera M, Arredondo MT et al. A comprehensive motor symptom monitoring and management system: the bradykinesia case. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 1008-1011
  • 75 Keijsers NL, Horstink MW, Gielen SC. Ambulatory motor assessment in Parkinson’s disease. Mov Disord 2006; 21: 34-44
  • 76 Tsipouras MG, Tzallas AT, Rigas G et al. Automated Levodopa-induced dyskinesia assessment. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 2411-2414
  • 77 Moore ST, MacDougall HG, Ondo WG. Ambulatory monitoring of freezing of gait in Parkinson’s disease. J Neurosci Methods 2008; 167: 340-348
  • 78 Lord S, Rochester L, Baker K et al. Concurrent validity of accelerometry to measure gait in Parkinsons Disease. Gait Posture 2008; 27: 357-359
  • 79 Dijkstra B, Kamsma YP, Zijlstra W. Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson’s disease. Arch Phys Med Rehabil 2010; 91: 1272-1277
  • 80 Klucken J, Barth J, Maertens K et al. Mobile biometrische Ganganalyse: Potenzial für Diagnose und Therapiemonitoring beim Parkinson-Syndrom. Nervenarzt 2011; 82: 1604-1611
  • 81 Mirelman A, Gurevich T, Giladi N et al. Gait alterations in healthy carriers of the LRRK2 G2019S mutation. Ann Neurol 2011; 69: 193-197
  • 82 Goetz CG, Stebbins GT, Wolff D et al. Testing objective measures of motor impairment in early Parkinson’s disease: Feasibility study of an at-home testing device. Mov Disord 2009; 24: 551-556
  • 83 Cunningham L, Mason S, Nugent C et al. Home-based monitoring and assessment of Parkinson’s disease. IEEE Trans Inf Technol Biomed 2011; 15: 47-53
  • 84 Patel S, Chen BR, Buckley T et al. Home monitoring of patients with Parkinson’s disease via wearable technology and a web-based application. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 4411-4414
  • 85 Winkler J, Ehret R, Büttner T et al. Parkinson’s disease risk score: moving to a premotor diagnosis. J Neurol 2011; 258 (Suppl. 02) S311-S315