Semin Reprod Med 2011; 29(3): 187-196
DOI: 10.1055/s-0031-1275515
© Thieme Medical Publishers

Placental Dysfunction and Fetal Programming: The Importance of Placental Size, Shape, Histopathology, and Molecular Composition

Mark S. Longtine1 , D. Michael Nelson1
  • 1Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
Further Information

Publication History

Publication Date:
27 June 2011 (online)

ABSTRACT

Normal function of the placenta is pivotal for optimal fetal growth and development. Fetal programming commonly is associated with placental dysfunction that predisposes to obstetric complications and suboptimal fetal outcomes. We consider several clinical phenotypes for placental dysfunction that likely predispose to fetal programming. Some of these reflect abnormal development of the chorioallantoic placenta in size, shape, or histopathology. Others result when exogenous stressors in the maternal environment combine with maladaptation of the placental response to yield small placentas with limited reserve, as typical of early-onset intrauterine growth restriction and preeclampsia. Still others reflect epigenetic changes, including altered expression of imprinted genes, altered enzymatic activity, or altered efficiencies in nutrient transport. Although the human placenta is a transient organ that persists only 9 months, the effects of this organ on the offspring remain for a lifetime.

REFERENCES

  • 1 Clifton V L. Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival.  Placenta. 2010;  31 (Suppl) S33-S39
  • 2 Graves J A. Review: Sex chromosome evolution and the expression of sex-specific genes in the placenta.  Placenta. 2010;  31 (Suppl) S27-S32
  • 3 Gatford K L, Simmons R A, De Blasio M J, Robinson J S, Owens J A. Review: Placental programming of postnatal diabetes and impaired insulin action after IUGR.  Placenta. 2010;  31 (Suppl) S60-S65
  • 4 Sibley C P, Brownbill P, Dilworth M, Glazier J D. Review: Adaptation in placental nutrient supply to meet fetal growth demand: implications for programming.  Placenta. 2010;  31 (Suppl) S70-S74
  • 5 Burton G J, Jauniaux E, Charnock-Jones D S. The influence of the intrauterine environment on human placental development.  Int J Dev Biol. 2010;  54 (2–3) 303-312
  • 6 Burton G J, Watson A L, Hempstock J, Skepper J N, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy.  J Clin Endocrinol Metab. 2002;  87 (6) 2954-2959
  • 7 Jones C J, Aplin J D, Burton G J. First trimester histiotrophe shows altered sialylation compared with secretory phase glycoconjugates in human endometrium.  Placenta. 2010;  31 (7) 576-580
  • 8 Jauniaux E, Hempstock J, Greenwold N, Burton G J. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies.  Am J Pathol. 2003;  162 (1) 115-125
  • 9 Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks' gestation.  Am J Obstet Gynecol. 2001;  184 (5) 998-1003
  • 10 Jauniaux E, Johns J, Burton G J. The role of ultrasound imaging in diagnosing and investigating early pregnancy failure.  Ultrasound Obstet Gynecol. 2005;  25 (6) 613-624
  • 11 Jauniaux E, Poston L, Burton G J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution.  Hum Reprod Update. 2006;  12 (6) 747-755
  • 12 Nelson D M, Crouch E C, Curran E M, Farmer D R. Trophoblast interaction with fibrin matrix. Epithelialization of perivillous fibrin deposits as a mechanism for villous repair in the human placenta.  Am J Pathol. 1990;  136 (4) 855-865
  • 13 Levy R, Smith S D, Yusuf K et al.. Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression.  Am J Obstet Gynecol. 2002;  186 (5) 1056-1061
  • 14 Burton G J, Jones C J. Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta.  Taiwan J Obstet Gynecol. 2009;  48 (1) 28-37
  • 15 Huppertz B. The anatomy of the normal placenta.  J Clin Pathol. 2008;  61 (12) 1296-1302
  • 16 Huppertz B. IFPA Award in Placentology Lecture: Biology of the placental syncytiotrophoblast—myths and facts.  Placenta. 2010;  31 (Suppl) S75-S81
  • 17 Heazell A E, Moll S J, Jones C J, Baker P N, Crocker I P. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species.  Placenta. 2007;  28 (Suppl A) S33-S40
  • 18 Brownbill P, Mahendran D, Owen D et al.. Denudations as paracellular routes for alphafetoprotein and creatinine across the human syncytiotrophoblast.  Am J Physiol Regul Integr Comp Physiol. 2000;  278 (3) R677-R683
  • 19 Rampersad R, Barton A, Sadovsky Y, Nelson D M. The C5b-9 membrane attack complex of complement activation localizes to villous trophoblast injury in vivo and modulates human trophoblast function in vitro.  Placenta. 2008;  29 (10) 855-861
  • 20 Roberts C T. IFPA Award in Placentology Lecture: Complicated interactions between genes and the environment in placentation, pregnancy outcome and long term health.  Placenta. 2010;  31 (Suppl) S47-S53
  • 21 Sherer D M, Salafia C M, Minior V K, Sanders M, Ernst L, Vintzileos A M. Placental basal plate myometrial fibers: clinical correlations of abnormally deep trophoblast invasion.  Obstet Gynecol. 1996;  87 (3) 444-449
  • 22 Salafia C M, Zhang J, Charles A K et al.. Placental characteristics and birthweight.  Paediatr Perinat Epidemiol. 2008;  22 (3) 229-239
  • 23 Myatt L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta.  Placenta. 2010;  31 (Suppl) S66-S69
  • 24 Burton G J, Woods A W, Jauniaux E, Kingdom J C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy.  Placenta. 2009;  30 (6) 473-482
  • 25 Lindström T M, Bennett P R. The role of nuclear factor kappa B in human labour.  Reproduction. 2005;  130 (5) 569-581
  • 26 Daoud G, Amyot M, Rassart E, Masse A, Simoneau L, Lafond J. ERK1/2 and p38 regulate trophoblasts differentiation in human term placenta.  J Physiol. 2005;  566 (Pt 2) 409-423
  • 27 Johnstone E D, Sibley C P, Lowen B, Guilbert L J. Epidermal growth factor stimulation of trophoblast differentiation requires MAPK11/14 (p38 MAP kinase) activation.  Biol Reprod. 2005;  73 (6) 1282-1288
  • 28 Krebs C, Macara L M, Leiser R, Bowman A W, Greer I A, Kingdom J C. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree.  Am J Obstet Gynecol. 1996;  175 (6) 1534-1542
  • 29 Kingdom J C, Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia.  Placenta. 1997;  18 (8) 613-621 discussion 623-626
  • 30 Hafner E, Metzenbauer M, Höfinger D et al.. Placental growth from the first to the second trimester of pregnancy in SGA-foetuses and pre-eclamptic pregnancies compared to normal foetuses.  Placenta. 2003;  24 (4) 336-342
  • 31 Jansson T, Thordstein M, Kjellmer I. Placental blood flow and fetal weight following uterine artery ligation. Temporal aspects of intrauterine growth retardation in the guinea pig.  Biol Neonate. 1986;  49 (3) 172-180
  • 32 Godfrey K, Robinson S, Barker D J, Osmond C, Cox V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth.  BMJ. 1996;  312 (7028) 410-414
  • 33 Baptiste-Roberts K, Salafia C M, Nicholson W K, Duggan A, Wang N Y, Brancati F L. Gross placental measures and childhood growth.  J Matern Fetal Neonatal Med. 2009;  22 (1) 13-23
  • 34 Benirschke K, Kaufmann P, Baergen R. Pathology of the Human Placenta. 5th ed. New York, NY: Springer; 2006
  • 35 Yampolsky M, Salafia C M, Shlakhter O, Haas D, Eucker B, Thorp J. Modeling the variability of shapes of a human placenta.  Placenta. 2008;  29 (9) 790-797
  • 36 Salafia C M, Maas E, Thorp J M, Eucker B, Pezzullo J C, Savitz D A. Measures of placental growth in relation to birth weight and gestational age.  Am J Epidemiol. 2005;  162 (10) 991-998
  • 37 Salafia C M, Misra D P, Yampolsky M, Charles A K, Miller R K. Allometric metabolic scaling and fetal and placental weight.  Placenta. 2009;  30 (4) 355-360
  • 38 Godfrey K M, Redman C W, Barker D J, Osmond C. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight.  Br J Obstet Gynaecol. 1991;  98 (9) 886-891
  • 39 Kajantie E, Thornburg K L, Eriksson J G, Osmond C, Barker D J. In preeclampsia, the placenta grows slowly along its minor axis.  Int J Dev Biol. 2010;  54 (2–3) 469-473
  • 40 Thornburg K L, O'Tierney P F, Louey S. Review: The placenta is a programming agent for cardiovascular disease.  Placenta. 2010;  31 (Suppl) S54-S59
  • 41 Salafia C M, Yampolsky M. Metabolic scaling law for fetus and placenta.  Placenta. 2009;  30 (5) 468-471
  • 42 Salafia C M, Zhang J, Miller R K, Charles A K, Shrout P, Sun W. Placental growth patterns affect birth weight for given placental weight.  Birth Defects Res A Clin Mol Teratol. 2007;  79 (4) 281-288
  • 43 Yampolsky M, Salafia C M, Shlakhter O, Haas D, Eucker B, Thorp J. Centrality of the umbilical cord insertion in a human placenta influences the placental efficiency.  Placenta. 2009;  30 (12) 1058-1064
  • 44 Langley-Evans S C. Nutritional programming of disease: unravelling the mechanism.  J Anat. 2009;  215 (1) 36-51
  • 45 Waterland R A, Jirtle R L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation.  Mol Cell Biol. 2003;  23 (15) 5293-5300
  • 46 Gheorghe C P, Goyal R, Mittal A, Longo L D. Gene expression in the placenta: maternal stress and epigenetic responses.  Int J Dev Biol. 2010;  54 (2-3) 507-523
  • 47 Sha K. A mechanistic view of genomic imprinting.  Annu Rev Genomics Hum Genet. 2008;  9 197-216
  • 48 Bressan F F, De Bem T H, Perecin F et al.. Unearthing the roles of imprinted genes in the placenta.  Placenta. 2009;  30 (10) 823-834
  • 49 Coan P M, Burton G J, Ferguson-Smith A C. Imprinted genes in the placenta—a review.  Placenta. 2005;  26 (Suppl A) S10-S20
  • 50 Wood A J, Oakey R J. Genomic imprinting in mammals: emerging themes and established theories.  PLoS Genet. 2006;  2 (11) e147
  • 51 Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome.  Nature. 2000;  403 (6769) 501-502
  • 52 Tremblay K D, Saam J R, Ingram R S, Tilghman S M, Bartolomei M S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene.  Nat Genet. 1995;  9 (4) 407-413
  • 53 Dean W, Ferguson-Smith A. Genomic imprinting: mother maintains methylation marks.  Curr Biol. 2001;  11 (13) R527-R530
  • 54 Wagschal A, Feil R. Genomic imprinting in the placenta.  Cytogenet Genome Res. 2006;  113 (1-4) 90-98
  • 55 Chuang J C, Jones P A. Epigenetics and microRNAs.  Pediatr Res. 2007;  61 (5 Pt 2) 24R-29R
  • 56 Iorio M V, Piovan C, Croce C M. Interplay between microRNAs and the epigenetic machinery: an intricate network.  Biochim Biophys Acta. 2010;  1799 (10–12) 694-701
  • 57 Maccani M A, Marsit C J. Epigenetics in the placenta.  Am J Reprod Immunol. 2009;  62 (2) 78-89
  • 58 Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor.  Cell. 1991;  64 (6) 1045-1046
  • 59 Constância M, Hemberger M, Hughes J et al.. Placental-specific IGF-II is a major modulator of placental and fetal growth.  Nature. 2002;  417 (6892) 945-948
  • 60 Coan P M, Fowden A L, Constancia M, Ferguson-Smith A C, Burton G J, Sibley C P. Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse.  J Physiol. 2008;  586 (Pt 20) 5023-5032
  • 61 Lau M M, Stewart C E, Liu Z, Bhatt H, Rotwein P, Stewart C L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality.  Genes Dev. 1994;  8 (24) 2953-2963
  • 62 Ludwig T, Eggenschwiler J, Fisher P, D'Ercole A J, Davenport M L, Efstratiadis A. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds.  Dev Biol. 1996;  177 (2) 517-535
  • 63 Barad O, Meiri E, Avniel A et al.. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues.  Genome Res. 2004;  14 (12) 2486-2494
  • 64 Luo S S, Ishibashi O, Ishikawa G et al.. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes.  Biol Reprod. 2009;  81 (4) 717-729
  • 65 Mouillet J F, Chu T, Nelson D M, Mishima T, Sadovsky Y. MiR-205 silences MED1 in hypoxic primary human trophoblasts.  FASEB J. 2010;  24 (6) 2030-2039
  • 66 Su L, Zhao S, Zhu M, Yu M. Differential expression of microRNAs in porcine placentas on days 30 and 90 of gestation.  Reprod Fertil Dev. 2010;  22 (8) 1175-1182
  • 67 Pineles B L, Romero R, Montenegro D et al.. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia.  Am J Obstet Gynecol. 2007;  196 (3) 261 e1-e6
  • 68 Zhu X M, Han T, Sargent I L, Yin G W, Yao Y Q. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies.  Am J Obstet Gynecol. 2009;  200 (6) 661 e1-e7
  • 69 Mouillet J F, Chu T, Hubel C A, Nelson D M, Parks W T, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction.  Placenta. 2010;  31 (9) 781-784
  • 70 Edwards C R, Benediktsson R, Lindsay R S, Seckl J R. 11 β-Hydroxysteroid dehydrogenases: key enzymes in determining tissue-specific glucocorticoid effects.  Steroids. 1996;  61 (4) 263-269
  • 71 Hahn T, Barth S, Graf R et al.. Placental glucose transporter expression is regulated by glucocorticoids.  J Clin Endocrinol Metab. 1999;  84 (4) 1445-1452
  • 72 Murphy V E, Clifton V L. Alterations in human placental 11β-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour.  Placenta. 2003;  24 (7) 739-744
  • 73 Alfaidy N, Gupta S, DeMarco C, Caniggia I, Challis J R. Oxygen regulation of placental 11 β-hydroxysteroid dehydrogenase 2: physiological and pathological implications.  J Clin Endocrinol Metab. 2002;  87 (10) 4797-4805
  • 74 Challis J R, Sloboda D M, Alfaidy N et al.. Prostaglandins and mechanisms of preterm birth.  Reproduction. 2002;  124 (1) 1-17
  • 75 Weinberg J, Sliwowska J H, Lan N, Hellemans K G. Prenatal alcohol exposure: foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences in outcome.  J Neuroendocrinol. 2008;  20 (4) 470-488
  • 76 Rasheed A, Hines R N, McCarver-May D G. Variation in induction of human placental CYP2E1: possible role in susceptibility to fetal alcohol syndrome?.  Toxicol Appl Pharmacol. 1997;  144 (2) 396-400
  • 77 Schalinske K L, Nieman K M. Disruption of methyl group metabolism by ethanol.  Nutr Rev. 2005;  63 (11) 387-391
  • 78 Dodic M, Abouantoun T, O'Connor A, Wintour E M, Moritz K M. Programming effects of short prenatal exposure to dexamethasone in sheep.  Hypertension. 2002;  40 (5) 729-734
  • 79 Jansson T, Powell T L. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches.  Clin Sci (Lond). 2007;  113 (1) 1-13
  • 80 Illsley N P, Caniggia I, Zamudio S. Placental metabolic reprogramming: do changes in the mix of energy-generating substrates modulate fetal growth?.  Int J Dev Biol. 2010;  54 (2-3) 409-419
  • 81 McMullen S, Osgerby J C, Thurston L M et al.. Alterations in placental 11 β-hydroxysteroid dehydrogenase (11 betaHSD) activities and fetal cortisol:cortisone ratios induced by nutritional restriction prior to conception and at defined stages of gestation in ewes.  Reproduction. 2004;  127 (6) 717-725
  • 82 Jansson T, Ekstrand Y, Björn C, Wennergren M, Powell T L. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes.  Diabetes. 2002;  51 (7) 2214-2219
  • 83 Alwasel S H, Abotalib Z, Aljarallah J S et al.. Changes in placental size during Ramadan.  Placenta. 2010;  31 (7) 607-610
  • 84 Ericsson A, Hamark B, Powell T L, Jansson T. Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta.  Hum Reprod. 2005;  20 (2) 521-530
  • 85 Cetin I, Ronzoni S, Marconi A M et al.. Maternal concentrations and fetal-maternal concentration differences of plasma amino acids in normal and intrauterine growth-restricted pregnancies.  Am J Obstet Gynecol. 1996;  174 (5) 1575-1583
  • 86 Cetin I, Alvino G. Intrauterine growth restriction: implications for placental metabolism and transport. A review.  Placenta. 2009;  30 (Suppl A) S77-S82
  • 87 Jansson T, Powell T L. IFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor?—a review.  Placenta. 2006;  27 (Suppl A) S91-S97
  • 88 Roos S, Kanai Y, Prasad P D, Powell T L, Jansson T. Regulation of placental amino acid transporter activity by mammalian target of rapamycin.  Am J Physiol Cell Physiol. 2009;  296 (1) C142-C150
  • 89 Longtine M, Chen B, Nelson D. Hypoxia induces autophagy in cultured human placental trophoblasts.  Presented at: The 57th meeting for the Society for Gynecological Investigation; March 16–19, 2011; Orlando, FL

Mark LongtinePh.D. 

Department of Obstetrics and Gynecology, Washington University School of Medicine

425 S. Euclid Avenue, St. Louis, MO 63110

Email: longtine@wudosis.wustl.edu

    >