Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

When the brain plays music: auditory–motor interactions in music perception and production

Key Points

  • Music performance is a natural and ubiquitous human skill that requires specific and unique types of control over motor systems and perception. Current knowledge about sensory–motor interactions is highly relevant, but may not be sufficient to explain the unique demands placed on these systems by musical execution.

  • Motor control systems relevant for music involve timing, sequencing and spatial organization. The premotor and supplementary motor cortices, cerebellum, and the basal ganglia are all implicated in these motor processes, but their precise contribution varies according to the demands of the task.

  • Auditory processing pathways include dorsal and ventral streams, with the dorsal stream, which projects to parietal and premotor cortices, being particularly relevant for auditory-guided actions.

  • Motor and auditory systems interact in terms of feedforward and feedback relationships. These interactions may be related to `hearing-doing' systems, analogous to the mirror-neuron system.

  • Neuroimaging studies show that auditory and motor systems in the brain are often co-activated during music perception and performance: listening alone engages the motor system, whereas performing without feedback engages auditory systems.

  • Ventral premotor regions are active when there is direct sensorimotor mapping (for example key press associated with a sound); dorsal premotor regions are active in relation to more abstract mappings (for example metrical organization of a rhythm).

  • Neural circuitry mediating these sensory–motor interactions may contribute to music cognition by helping to create predictions and expectancies which music relies on for its intellectual and emotional appeal.

Abstract

Music performance is both a natural human activity, present in all societies, and one of the most complex and demanding cognitive challenges that the human mind can undertake. Unlike most other sensory–motor activities, music performance requires precise timing of several hierarchically organized actions, as well as precise control over pitch interval production, implemented through diverse effectors according to the instrument involved. We review the cognitive neuroscience literature of both motor and auditory domains, highlighting the value of studying interactions between these systems in a musical context, and propose some ideas concerning the role of the premotor cortex in integration of higher order features of music with appropriately timed and organized actions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Auditory–motor interactions during musical performance.
Figure 2: Hierarchical metrical structure in a familiar song.
Figure 3: Coupling between auditory and premotor cortices in musical contexts.
Figure 4: The role of the dorsal premotor cortex in metrical processing.

Similar content being viewed by others

Peter Vuust, Ole A. Heggli, … Morten L. Kringelbach

References

  1. Buhusi, C. V. & Meck, W. H. What makes us tick? Functional and neural mechanisms of interval timing. Nature Rev. Neurosci. 6, 755–765 (2005).

    Article  CAS  Google Scholar 

  2. Ivry, R. B. & Spencer, R. M. The neural representation of time. Curr. Opin. Neurobiol. 14, 225–232 (2004). This review integrates data from patient and neuroimaging studies of motor and perceptual timing, and presents a model for the contributions of the cerebellum and basal ganglia to timing functions.

    Article  CAS  PubMed  Google Scholar 

  3. Spencer, R. M., Zelaznik, H. N., Diedrichson, J. & Ivry, R. B. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300, 1437–1439 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Wing, A. M. Voluntary timing and brain function: an information processing approach. Brain Cogn 48, 7–30 (2002).

    Article  PubMed  Google Scholar 

  5. Mauk, M. D. & Buonomano, D. V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Penhune, V. B., Zatorre, R. J. & Evans, A. C. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J. Cogn. Neurosci. 10, 752–765 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, P. A. & Miall, R. C. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr. Opin. Neurobiol. 13, 250–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ivry, R. B., Spencer, R. M., Zelaznik, H. N. & Diedrichsen, J. The cerebellum and event timing. Ann. N. Y. Acad. Sci. 978, 302–317 (2003).

    Article  Google Scholar 

  9. Ramnani, N. & Passingham, R. E. Changes in the human brain during rhythm learning. J. Cogn. Neurosci. 13, 952–966 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Sakai, K., Ramnani, N. & Passingham, R. E. Learning of sequences of finger movements and timing: frontal lobe and action-oriented respresentation. J. Neurophysiol. 88, 2035–2046 (2002).

    Article  PubMed  Google Scholar 

  11. Harrington, D. L., Lee, R. R., Boyd, L. A., Rapcsak, S. Z. & Knight, R. T. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain 127, 561–574 (2004).

    Article  PubMed  Google Scholar 

  12. Bastien, A. J. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16, 645–649 (2006).

    Article  CAS  Google Scholar 

  13. Ohyama, T., Nores, W. L., Murphy, M. & Mauk, M. D. What the cerebellum computes. Trends Neurosci. 26, 222–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Shimansky, Y., Wang, J. J., Bauer, R. A., Bracha, V. & Bloedel, J. R. On-line compensation for perturbations of a reaching movement is cerebellar dependent: support for the task dependency hypothesis. Exp. Brain Res. 155, 156–172 (2004).

    Article  PubMed  Google Scholar 

  15. Balasubramanian, R., Wing, A. M. & Daffertshofer, A. Keeping with the beat: movement trajectories contribute to movement timing. Exp. Brain Res. 159, 129–134 (2004).

    Google Scholar 

  16. Loehr, J. D. & Palmer, C. Cognitive and biomechanical influences in pianists' finger tapping. Exp. Brain Res. 178, 518–528 (2006).

    Article  PubMed  Google Scholar 

  17. Bower, J. M. The cerebellum as a sensory acquisition controller. Hum. Brain Mapp. 2, 255–256 (1995).

    Article  Google Scholar 

  18. Petacchi, A., Laird, A. R., Fox, P. T. & Bower, J. M. Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum. Brain Mapp. 25, 118–128 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harrington, D. L. & Haaland, K. Y. Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev. Neurosci. 10, 91–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Rao, S. M. et al. Distributed neural systems underlying the timing of movements. J. Neurosci. 17, 5528–5535 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rao, S. M., Mayer, A. R. & Harrington, D. L. The evolution of brain activation during temporal processing. Nature Neurosci. 4, 317–323 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Pope, P., Wing, A. M., Praamstra, P. & Miall, R. C. Force related activations in rhythmic sequence production. NeuroImage 27, 909–918 (2005).

    Article  PubMed  Google Scholar 

  23. Bengtsson, S. L., Ehrsson, H. H., Forssberg, H. & Ullén, F. Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. Eur. J. Neurosci. 19, 2591–2602 (2004).

    Article  PubMed  Google Scholar 

  24. Lewis, P. A., Wing, A. M., Pope, P. A., Praamstra, P. & Miall, R. C. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, and continuation phases of paced finger tapping. Neuropsychologia 42, 1301–1312 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Moving in time: brain networks for auditory-motor synchronization are modulated by rhythm complexity and musical training. J. Cogn. Neurosci. (in the press).

  26. Graybiel, A. M. The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15, 638–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Doyon, J., Penhune, V. B. & Ungerleider, L. G. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41, 252–262 (2003).

    Article  PubMed  Google Scholar 

  28. Penhune, V. B. & Doyon, J. Cerebellum and M1 interaction during early learning of timed motor sequences. NeuroImage 26, 801–812 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hikosaka, O., Nakamura, H., Sakai, K. & Nakahara, H. Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Thach, W. T. A role for the cerebellum in learning movement coordination. Neurobiol. Learn. Mem. 70, 177–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Garraux, G. et al. Shared brain areas but not functional connections in controlling movement timing and order. J. Neurosci. 25, 5290–5297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakai, K., Hikosaka, O. & Nakamura, H. Emergence of rhythm during motor learning. Trends Cogn. Sci. 8, 547–553 (2004). This review nicely ties together the behavioural and neuroimaging data on motor sequence chunking, and posits the role of the preSMA and cerebellum during rhythm and motor skill acquisition.

    Article  PubMed  Google Scholar 

  33. Kennerley, S. W., Sakai, K. & Rushworth, M. F. Organization of action sequences and the role of the pre-SMA. J. Neurophysiol. 91, 978–993 (2004).

    Article  PubMed  Google Scholar 

  34. Janata, P. & Grafton, S. T. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nature Neurosci. 6, 682–687 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Schubotz, R. I. & von Cramon, D. Y. Functional-anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. NeuroImage 20, Suppl. 1, S120–S131 (2003).

    Article  PubMed  Google Scholar 

  36. Johnson, P. B., Ferraina, S., Bianchi, L. & Caminiti, R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6, 102–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Rizzolatti, G., Luppino, G. & Matelli, M. The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Parsons, M. W., Harrington, D. L. & Rao, S. M. Distinct neural systems underlie learning of visuomotor and spatial representations of motor skills. Hum. Brain Mapp. 24, 229–247 (2005).

    Article  PubMed  Google Scholar 

  39. Chen, J., Woollacott, M. & Pologe, S. Accuracy and underlying mechanisms of shifting movements in cellists. Exp. Brain Res. 174, 467–476 (2006).

    Article  PubMed  Google Scholar 

  40. Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of 'what' and 'where' in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaas, J. H., Hackett, T. A. & Tramo, M. J. Auditory processing in primate cerebral cortex. Curr. Opin. Neurbiol. 9, 164–170. (1999).

    Article  CAS  Google Scholar 

  42. Binder, J. R. et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 10, 512–528. (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Warren, J. E., Wise, R. J. & Warren, J. D. Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci. 28, 636–643 (2005). An important review paper that incorporates speech and non-speech literature to propose that the dorsal auditory pathway is involved in general transformations of acoustic information into motor representations.

    Article  CAS  PubMed  Google Scholar 

  44. Milner, A. D. & Goodale, M. A. The Visual Brain in Action (Oxford University Press, New York, 1995).

    Google Scholar 

  45. Belin, P. & Zatorre, R. J. 'What', 'where', and 'how' in auditory cortex. Nature Neurosci. 3, 965–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Warren, J. D., Jennings, A. R. & Griffiths, T. D. Analysis of the spectral envelope of sounds by the human brain. NeuroImage 24, 1052–1057 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Zatorre, R. J., Bouffard, M. & Belin, P. Sensitivity to auditory object features in human temporal neocortex. J. Neurosci. 24, 3637–3642 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zatorre, R. J. & Belin, P. in Plasticity of the Central Auditory System and Processing of Complex Acoustic Signals (eds Syka, J. & Merzenich, M.) 241–254 (Plenum, London, 2005).

    Google Scholar 

  49. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zatorre, R. J. Pitch perception of complex tones and human temporal-lobe function. J. Acoust. Soc. Am. 84, 566–572 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Johnsrude, I. S., Penhune, V. B. & Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123, 155–163 (2000).

    Article  PubMed  Google Scholar 

  52. Penagos, H., Melcher, J. R. & Oxenham, A. J. A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J. Neurosci. 24, 6810–6815 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S. & Griffiths, T. D. The processing of temporal pitch and melody information in auditory cortex. Neuron 36, 767–776 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Zatorre, R. J., Belin, P. & Penhune, V. B. Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46 (2002).

    Article  PubMed  Google Scholar 

  55. Boemio, A., Fromm, S., Braun, A. & Poeppel, D. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neurosci. 8, 389–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Schönwiesner, M., Rubsamen, R. & von Cramon, D. Y. Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. Eur. J. Neurosci. 22, 1521–1528 (2005).

    Article  PubMed  Google Scholar 

  57. Scott, S. K. & Wise, R. J. The functional neuroanatomy of prelexical processing in speech perception. Cognition 92, 13–45 (2004).

    Article  PubMed  Google Scholar 

  58. Zatorre, R. J. & Gandour, J. T. Neural specializations for speech and pitch: moving beyond the dichotomies. Philos. Trans. R. Soc. Lond. B Biol. Sci. (in the press).

  59. Serrien, D. J., Ivry, R. B. & Swinnen, S. P. Dynamics of hemispheric specialization and integration in the context of motor control. Nature Rev. Neurosci. 7, 160–166 (2006).

    Article  CAS  Google Scholar 

  60. Koelsch, S. Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol. 15, 207–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Krumhansl, C. L. Rhythm and pitch in music cognition. Psychol. Bull. 126, 159–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Jones, M. R., Moynihan, H., MacKenzie, N. & Puente, J. Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol. Sci. 13, 313–319 (2002).

    Article  PubMed  Google Scholar 

  63. Peretz, I. & Coltheart, M. Modularity of music processing. Nature Neurosci. 6, 688–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Peretz, I. Processing of local & global musical information by unilateral brain-damaged patients. Brain 113, 1185–1205 (1990).

    Article  PubMed  Google Scholar 

  65. Penhune, V. B., Zatorre, R. J. & Feindel, W. H. The role of auditory cortex in retention of rhythmic patterns in patients with temporal-lobe removals including Heschl's gyrus. Neuropsychologia 37, 315–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Kester, D. B. et al. Acute effect of anterior temporal lobectomy on musical processing. Neuropsychologia 29, 703–708 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007).

    Article  PubMed  Google Scholar 

  68. Chen, J. L., Penhune, V. B. & Zatorre, R. J. in Society for Neuroscience Abst. 747.15 (Atlanta GA, 2006).

    Google Scholar 

  69. Sakai, K. et al. Neural representation of a rhythm depends on its interval ratio. J. Neurosci. 19, 10074–10081 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Patel, A. D., Iversen, J. R., Chen, Y. & Repp, B. H. The influence of metricality and modality on synchronization with a beat. Exp. Brain Res. 163, 226–238 (2005).

    Article  PubMed  Google Scholar 

  71. Repp, B. H. & Penel, A. Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychol. Res. 68, 252–270 (2004).

    Article  PubMed  Google Scholar 

  72. Large, E. W. & Palmer, C. Perceiving temporal regularity in music. Cogn. Sci. 26, 1–37 (2002). This paper synthesizes the authors' empirical studies to develop both a theoretical framework and a mathematical model for the way listeners perceive temporal regularity in musical performance.

    Article  Google Scholar 

  73. Thaut, M. H., McIntosh, G. C. & Rice, R. R. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 151, 207–212 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. McIntosh, G. C., Brown, S. H., Rice, R. R. & Thaut, M. H. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease. J. Neurol. Neurosurg. Psychiatr. 62, 22–26 (1997).

    Article  CAS  Google Scholar 

  75. Repp, B. H. Effects of auditory feedback deprivation on expressive piano performance. Music Perception 16, 409–438 (1999).

    Article  Google Scholar 

  76. Pfordresher, P. Q. & Palmer, C. Effects of hearing the past, present, or future during music performance. Percept. Psychophys. 68, 362–376 (2006).

    Article  PubMed  Google Scholar 

  77. Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004). An important proposal for a dual-stream model of speech processing with emphasis on an area at the parietal–temporal junction important for sensory–motor transformations.

    Article  PubMed  Google Scholar 

  78. Scott, S. K. & Johnsrude, I. S. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 26, 100–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Hickok, G., Buchsbaum, B., Humphries, C. & Muftuler, T. Auditory–motor interaction revealed by fMRI: speech, music, and working memory in area SPT. J. Cogn. Neurosci. 15, 673–682 (2003).

    Article  PubMed  Google Scholar 

  80. Griffiths, T. D. & Warren, J. D. The planum temporale as a computational hub. Trends Neurosci. 25, 348–353 (2002). A review paper that proposes a model of how the planum temporale is involved in the analysis of complex sounds, including language and music.

    Article  CAS  PubMed  Google Scholar 

  81. Patel, A. D. Musical rhythm, linguistic rhythm, and human evolution. Music Perception 24, 99–104 (2006).

    Article  Google Scholar 

  82. Drake, C., Penel, A. & Bigand, E. Tapping in time with mechanically and expressively performed music. Music Perception 18, 1–23 (2000).

    Article  Google Scholar 

  83. Large, E. W., Fink, P. & Kelso, J. A. Tracking simple and complex sequences. Psychol. Res. 66, 3–17 (2002).

    Article  PubMed  Google Scholar 

  84. Snyder, J. S. & Krumhansl, C. L. Tapping to ragtime: cues to pulse finding. Music Perception 18, 455–489 (2001).

    Article  Google Scholar 

  85. Palmer, C. & Pfordresher, P. Q. Incremental planning in sequence production. Psychol. Rev. 110, 683–712 (2003).

    Article  PubMed  Google Scholar 

  86. Jackendoff, R. & Lerdahl, F. The capacity for music: what is it and what's special about it? Cognition 100, 33–72 (2006).

    Article  PubMed  Google Scholar 

  87. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev. Neurosci. 2, 661–670 (2001).

    Article  CAS  Google Scholar 

  88. Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Keysers, C. et al. Audiovisual mirror neurons and action recognition. Exp. Brain Res. 153, 628–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Rizzolatti, G. & Arbib, M. A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Rizzolatti, G. & Buccino, G. in From monkey Brain to Human Brain (eds Dehaene, S., Duhamel, J. R., Hauser, M. D. & Rizzolatti, G.) 213–233 (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  92. Liberman, A. M. & Mattingly, I. G. The motor theory of speech perception revised. Cognition 21, 1–36 (1985).

    Article  CAS  PubMed  Google Scholar 

  93. Burton, M. W., Small, S. L. & Blumstein, S. E. The role of segmentation in phonological processing: an fMRI investigation. J. Cogn. Neurosci. 12, 679–690 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Zatorre, R. J., Evans, A. C., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch processing in speech perception. Science 256, 846–849 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J. & Evans, A. C. Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Eur. J. Neurosci. 8, 2236–2246 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Watkins, K. E., Strafella, A. P. & Paus, T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41, 989–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Bangert, M. & Altenmuller, E. O. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 4, 26 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lahav, A., Saltzman, E. & Schlaug, G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 27, 308–314 (2007). fMRI study in which non-musicians were trained to play simple melodies. The specificity of a premotor cortical network involved in mapping sounds to actions is demonstrated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brown, S. & Martinez, M. J. Activation of premotor vocal areas during musical discrimination. Brain Cogn. 63, 59–69 (2007).

    Article  PubMed  Google Scholar 

  100. Koelsch, S., Fritz, T., von Cramon, D. Y., Müller, K. & Friederici, A. D. Investigating emotion with music: an fMRI study. Hum. Brain Mapp. 27, 239–250 (2006).

    Article  PubMed  Google Scholar 

  101. Chen, J. L., Zatorre, R. J. & Penhune, V. B. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage 32, 1771–1781 (2006). An fMRI study demonstrating the specific role of the dorsal premotor cortex in interfacing auditory information during rhythm synchronization.

    Article  PubMed  Google Scholar 

  102. Hund-Georgiadis, M. & von Cramon, D. Y. Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Exp. Brain Res. 125, 417–425 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Jancke, L., Shah, N. J. & Peters, M. Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res. Cogn. Brain Res. 10, 177–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Koeneke, S., Lutz, K., Wustenberg, T. & Jäncke, L. Long-term training affects cerebellar processing in skilled keyboard players. Neuroreport 15, 1279–1282 (2004).

    Article  PubMed  Google Scholar 

  105. Meister, I. G. et al. Playing piano in the mind—an fMRI study on music imagery and performance in pianists. Brain Res. Cogn. Brain Res. 19, 219–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Baumann, S., Koeneke, S., Meyer, M., Lutz, K. & Jancke, L. A network for sensory-motor integration: what happens in the auditory cortex during piano playing without acoustic feedback? Ann. N. Y. Acad. Sci. 1060, 186–188 (2005).

    Article  PubMed  Google Scholar 

  107. Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917–926 (2006).

    Article  PubMed  Google Scholar 

  108. Haueisen, J. & Knosche, T. R. Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci. 13, 786–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Haslinger, B. et al. Transmodal sensorimotor networks during action observation in professional pianists. J. Cogn. Neurosci. 17, 282–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. D'Ausilio, A., Altenmuller, E., Olivetti Belardinelli, M. & Lotze, M. Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. Eur. J. Neurosci. 24, 955–958 (2006). TMS study demonstrating differential changes in short- and long-term motor cortical excitability in musicians during music perception.

    Article  CAS  PubMed  Google Scholar 

  111. Rosenkranz, K., Williamon, A. & Rothwell, J. C. Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J. Neurosci. 27, 5200–5206 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zatorre, R. J. & Halpern, A. R. Mental concerts: musical imagery and auditory cortex. Neuron 47, 9–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Langheim, F. J., Callicott, J. H., Mattay, V. S., Duyn, J. H. & Weinberger, D. R. Cortical systems associated with covert music rehearsal. NeuroImage 16, 901–908 (2002).

    Article  PubMed  Google Scholar 

  114. Kennerley, S. W., Sakai, K. & Rushworth, M. F. Organization of action sequences and the role of the pre-SMA. J. Neurophysiol. 91, 978–993 (2004).

    Article  PubMed  Google Scholar 

  115. Shima, K. & Tanji, J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Jäncke, L., Loose, R., Lutz, K., Sprecht, K. & Shah, N. J Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res. Cogn. Brain Res. 10, 51–66 (2000).

    Article  PubMed  Google Scholar 

  117. Mayville, J. M., Jantzen, K. J., Fuchs, A., Steinberg, F. L. & Kelso, J. A. Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Functional magnetic resonance imaging. Hum. Brain Mapp. 17, 214–229 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Penhune, V. B. & Doyon, J. Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. J. Neurosci. 22, 1397–1406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Thaut, M. H. Neural basis of rhythmic timing networks in the human brain. Ann. N. Y. Acad. Sci. 999, 364–373 (2003).

    Article  PubMed  Google Scholar 

  120. Nezafat, R., Shadmehr, R. & Holcomb, H. H. Long-term adaptation to dynamics of reaching movements: a PET study. Exp. Brain Res. 140, 66–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Bloedel, J. Functional heterogeneity with structural homogeneity: how does the cerebellum operate? Behav. Brain Sci. 15, 666–678 (1992).

    Article  Google Scholar 

  122. Hoshi, E. & Tanji, J. Functional specialization in dorsal and ventral premotor areas. Prog. Brain Res. 143, 507–511 (2004).

    Article  PubMed  Google Scholar 

  123. Picard, N. & Strick, P. L. Imaging the premotor areas. Curr. Opin. Neurobiol. 11, 663–672 (2001). Review of the anatomical and functional organization of the medial and lateral premotor regions in humans and monkeys.

    Article  CAS  PubMed  Google Scholar 

  124. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004). A review of the mirror neuron system and presentation of an idea for the evolution of echo mirror neurons.

    Article  CAS  PubMed  Google Scholar 

  125. Wise, S. P., di Pellegrino, G. & Boussaoud, D. The premotor cortex and nonstandard sensorimotor mapping. Can. J. Physiol. Pharmacol. 74, 469–482 (1996).

    CAS  PubMed  Google Scholar 

  126. Hoshi, E. & Tanji, J. Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J. Neurophysiol. 95, 3596–3616 (2006). The latest in a series of excellent electrophysiological studies on the premotor cortex in monkeys; presents a well-supported hypothesis for how the ventral and dorsal premotor cortex are involved in sensory–motor integration.

    Article  PubMed  Google Scholar 

  127. Kakei, S., Hoffman, D. S. & Strick, P. L. Direction of action is represented in the ventral premotor cortex. Nature Neurosci. 4, 1020–1025 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Murata, A. et al. Object representation in the ventral premotor cortex (area F5) of the monkey. J. Neurophysiol. 78, 2226–2230 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Rizzolatti, G., Fogassi, L. & Gallese, V. Motor and cognitive functions of the ventral premotor cortex. Curr. Opin. Neurobiol. 12, 149–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Boussaoud, D. & Wise, S. P. Primate frontal cortex: neuronal activity following attentional versus intentional cues. Exp. Brain Res. 95, 15–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Kurata, K. Information processing for motor control in primate premotor cortex. Behav. Brain Res. 61, 135–142 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Cisek, P. & Kalaska, J. F. Neural correlates of mental rehearsal in dorsal premotor cortex. Nature 431, 993–996 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Petrides, M. in From monkey brain to human brain. (eds Dehaene, S., Duhamel, J. R., Hauser, M. D. & Rizzolatti, G.) 293–314 (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  134. Halsband, U., Ito, N., Tanji, J. & Freund, H. J. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116, 243–266 (1993).

    Article  PubMed  Google Scholar 

  135. Passingham, R. E. Premotor cortex: sensory cues and movement. Behav. Brain Res. 18, 175–185 (1985).

    Article  CAS  PubMed  Google Scholar 

  136. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985).

    Article  CAS  PubMed  Google Scholar 

  137. Schluter, N. D., Rushworth, M. F., Passingham, R. E. & Mills, K. R. Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 121, 785–799 (1998).

    Article  PubMed  Google Scholar 

  138. Bermudez, P. & Zatorre, R. J. Conditional associative memory for musical stimuli in nonmusicians: implications for absolute pitch. J. Neurosci. 25, 7718–7723 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kurata, K. & Hoffman, D. S. Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. J. Neurophysiol. 71, 1151–1164 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Davare, M., Andres, M., Cosnard, G., Thonnard, J. L. & Olivier, E. Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J. Neurosci. 26, 2260–2268 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Huron, D. Sweet Anticipation. Music and the Psychology of Expectation (MIT Press, Cambridge, Massachusettes, 2006).

    Book  Google Scholar 

  142. Buccino, G. et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).

    CAS  PubMed  Google Scholar 

  143. Graziano, M. S., Taylor, C. S., Moore, T. & Cooke, D. F. The cortical control of movement revisited. Neuron 36, 349–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Dum, R. P. & Strick, P. L. Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J. Neurosci. 25, 1375–1386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fiebach, C. J. & Schubotz, R. I. Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca's area and ventral premotor cortex across domains? Cortex 42, 499–502 (2006).

    Article  PubMed  Google Scholar 

  146. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Koechlin, E. & Jubault, T. Broca's area and the hierarchical organization of human behaviour. Neuron 50, 963–974 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Petrides, M. Lateral prefrontal cortex: architectonic and functional organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 781–795 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schneider, P. et al. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neurosci. 5, 688–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055 (1995).

    Article  CAS  PubMed  Google Scholar 

  153. Watanabe, D., Savion-Lemieux, T. & Penhune, V. B. The effect of early musical training on adult motor performance: Evidence for a sensitive period in motor learning. Exp. Brain Res. 176, 332–340 (2007).

    Article  PubMed  Google Scholar 

  154. Hutchinson, S., Lee, L. H., Gaab, N. & Schlaug, G. Cerebellar Volume of Musicians. Cereb. Cortex 13, 943–949 (2003).

    Article  PubMed  Google Scholar 

  155. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nature Neurosci. 8, 1148–1150 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Chavis, D. A. & Pandya, D. N. Further observations on corticofrontal connections in the rhesus monkey. Brain Res. 117, 369–386 (1976).

    Article  CAS  PubMed  Google Scholar 

  157. Luppino, G., Calzavara, R., Rozzi, S. & Matelli, M. Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque. Eur. J. Neurosci. 14, 1035–1040 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Petrides, M. & Pandya, D. N. Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J. Comp. Neurol. 498, 227–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Petrides, M. & Pandya, D. N. Association fiber pathways to the frontal cortex from the superior temporal region in the Rhesus monkey. J. Comp. Neurol. 273, 52–66 (1988).

    Article  CAS  PubMed  Google Scholar 

  160. Deacon, T. W. Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Res. 573, 8–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  161. Pandya, D. N. & Yeterian, E. H. Comparison of prefrontal architecture and connections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1423–1432 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Petrides, M. & Pandya, D. N. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 31–50 (Oxford University Press, Oxford, 2002).

    Book  Google Scholar 

  163. Barbas, H. & Pandya, D. N. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J. Comp. Neurol. 256, 211–228 (1987).

    Article  CAS  PubMed  Google Scholar 

  164. Lu, M. T., Preston, J. B. & Strick, P. L. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341, 375–392 (1994).

    Article  CAS  PubMed  Google Scholar 

  165. Luppino, G., Rozzi, S., Calzavara, R. & Matelli, M. Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur. J. Neurosci. 17, 559–578 (2003).

    Article  PubMed  Google Scholar 

  166. Luppino, G., Matelli, M., Camarda, R. & Rizzolatti, G. Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J. Comp. Neurol. 338, 114–140 (1993).

    Article  CAS  PubMed  Google Scholar 

  167. Mesulam, M. M. & Mufson, E. J. in Cerebral Cortex (eds Peters, A. A. & Jones, E. G.) 179–226 (Plenum Press, New York, 1985).

    Google Scholar 

  168. Seltzer, B. & Pandya, D. N. Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 281, 97–113 (1989).

    Article  CAS  PubMed  Google Scholar 

  169. Juslin, P. N. & Sloboda, J. A. Music and Emotion: Theory and Research (Oxford University Press, Oxford, UK, 2001).

    Google Scholar 

  170. Krumhansl, C. L. An exploratory study of musical emotions and psychophysiology. Can. J. Exp. Psychol. 51, 336–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. de Gelder, B. Towards the neurobiology of emotional body language. Nature Rev. Neurosci. 7, 242–249 (2006).

    Article  CAS  Google Scholar 

  173. Juslin, P. N. in Musical Communication (eds. Miell, D., MacDonald, R. & Hargreaves, D.) 85–115 (Oxford University Press, New York, 2005).

    Book  Google Scholar 

  174. Molnar-Szakacs, I. & Overy, K. Music and mirror neurons: from motion to 'e'motion. Soc. Cogn. Affect. Neurosci. 1, 235–241 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Belin, P., Zatorre, R. J., Hoge, R., Evans, A. C. & Pike, B. Event-related fMRI of the auditory cortex. NeuroImage 10, 417–429 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge ongoing research support from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council, and the Fonds de la Recherche en Santé du Québec. We thank C. Palmer for helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Zatorre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Robert J. Zatorre's homepage

Glossary

Rhythm

The local organization of musical time. Rhythm is the pattern of temporal intervals within a musical measure or phrase that in turn creates the perception of stronger and weaker beats.

Pitch

A percept according to which periodic sounds may be ordered from low to high. Musical pitch has complex properties related to scales, and is often represented as a helix. Perceived pitch most often corresponds to the fundamental frequency, even in its absence, owing to the presence of harmonics that are directly related to the fundamental frequency.

Kinematics

Parameters of movement through space without reference to forces (for example, direction, velocity and acceleration).

Chunking

The re-organization or re-grouping of movement sequences into smaller sub-sequences during performance. Chunking is thought to facilitate the smooth performance of complex movements and to improve motor memory.

Spectral energy

Energy contained in the frequency distribution of a given sound.

Retinotopic mapping

The organization or mapping of the visual cortex that reflects the spatial organization of visual information in the retina.

Cochleotopic mapping

The topographic organization or mapping of the auditory cortex to reflect the frequency-based representation in the cochlea.

Fundamental frequency

The frequency of a periodic sound corresponding to the lowest period or mode of vibration, and usually the primary contributor to the perception of pitch. To be distinguished from harmonic partials, which occur at integer multiples of the fundamental frequency.

Pitch constancy

The ability to perceive pitch identity across changes in acoustical properties, such as loudness, temporal envelope, or across different timbres (for example, voices or instruments).

Musical syntax

Rules governing the melodic, rhythmic and harmonic construction of music in a given musical culture.

Tapping to the beat

The ability to tap along to an identifiable repeating pulse present in many styles of music. This periodic pulse usually coincides with the strong beat of a rhythm's meter.

Mental representation

A psychological construct describing information about an object, action or percept that is thought to be encoded in the brain.

Meter

The hierarchical and periodic organization of musical time, usually extending over multiple measures or phrases. Meter is derived from the alternating patterns of strong and weak beats or pulses.

Phonemes

Individual units of speech sound that combine to make words.

Magnetoencephalography

(MEG). A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity on the timescale of milliseconds.

Transcranial magnetic stimulation

(TMS). A technique that is used to induce a transient interruption of normal activity in a relatively restricted area of the brain. It is based on the generation of a strong magnetic field near the area of interest, which, if changed rapidly enough, will induce an electric field that is sufficient to stimulate neurons.

Diffusion tensor imaging

(DTI). A method that can provide quantitative information with which to visualize and study connectivity and continuity of neural pathways in the central and peripheral nervous systems in vivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zatorre, R., Chen, J. & Penhune, V. When the brain plays music: auditory–motor interactions in music perception and production. Nat Rev Neurosci 8, 547–558 (2007). https://doi.org/10.1038/nrn2152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing