Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anti-inflammatory therapies for atherosclerosis

Key Points

  • Atherosclerosis is characterized by lipid deposition and chronic inflammation, associated with immune activation and the induction of inflammatory mediators and signalling pathways

  • Putative therapeutic strategies specifically targeting chronic inflammation in atherosclerosis include classic anti-inflammatory drugs, biologic therapies targeting cytokines and chemokines, and small molecule enzyme inhibitors and receptor antagonists

  • Inducing immune tolerance through vaccination against atherosclerosis-associated immunogens can potentially offer an additional strategy for protection against atherosclerosis

  • Evidence in support of the use of anti-inflammatory therapies for atherosclerosis is mainly based on either observational or small interventional studies to evaluate surrogate markers of disease activity

  • Randomized controlled studies to evaluate the effect of specific anti-inflammatory strategies on cardiovascular outcomes are ongoing and might lead the way for additional therapeutic strategies

Abstract

The view of atherosclerosis as an inflammatory disease has emerged from observations of immune activation and inflammatory signalling in human atherosclerotic lesions, from the definition of inflammatory biomarkers as independent risk factors for cardiovascular events, and from evidence of low-density lipoprotein-induced immune activation. Studies in animal models of hyperlipidaemia have also supported the beneficial effects of countering inflammation to delay atherosclerosis progression. Specific inflammatory pathways with relevance to human diseases have been identified, and inhibitors of these pathways are either already in use for the treatment of other diseases, or are under development and evaluation. These include 'classic' drugs (such as allopurinol, colchicine, and methotrexate), biologic therapies (for example tumour necrosis factor inhibitors and IL-1 neutralization), as well as targeting of lipid mediators (such as phospholipase inhibitors and antileukotrienes) or intracellular pathways (inhibition of NADPH oxidase, p38 mitogen-activated protein kinase, or phosphodiesterase). The evidence supporting the use of anti-inflammatory therapies for atherosclerosis is mainly based on either observational or small interventional studies evaluating surrogate markers of disease activity. Nevertheless, these data are crucial to understand the role of inflammation in atherosclerosis, and to design randomized controlled studies to evaluate the effect of specific anti-inflammatory strategies on cardiovascular outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammation pathways with potential roles in atherosclerosis.
Figure 2: Phospholipases and lipid mediators of inflammation in atherosclerosis.

Similar content being viewed by others

References

  1. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Jonasson, L., Holm, J., Skalli, O., Gabbiani, G. & Hansson, G. K. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J. Clin. Invest. 76, 125–131 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170, 1595–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Palinski, W. et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl Acad. Sci. USA 86, 1372–1376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mach, F., Schonbeck, U., Sukhova, G. K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394, 200–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Nicoletti, A., Kaveri, S., Caligiuri, G., Bariety, J. & Hansson, G. K. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J. Clin. Invest. 102, 910–918 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 12, 204–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Jonasson, L., Holm, J. & Hansson, G. K. Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl Acad. Sci. USA 85, 2303–2306 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marks, A. R. Sirolimus for the prevention of in-stent restenosis in a coronary artery. N. Engl. J. Med. 349, 1307–1309 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lutgens, E. et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J. Exp. Med. 207, 391–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chatzigeorgiou, A. et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc. Natl Acad. Sci. USA 111, 2686–2691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cutolo, M., Sulli, A., Pizzorni, C., Seriolo, B. & Straub, R. H. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann. Rheum. Dis. 60, 729–735 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bulgarelli, A., Martins Dias, A. A., Caramelli, B. & Maranhao, R. C. Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. J. Cardiovasc. Pharmacol. 59, 308–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Westlake, S. L. et al. The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford) 49, 295–307 (2010).

    Article  CAS  Google Scholar 

  18. Micha, R. et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am. J. Cardiol. 108, 1362–1370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahlehoff, O. et al. Cardiovascular disease event rates in patients with severe psoriasis treated with systemic anti-inflammatory drugs: a Danish real-world cohort study. J. Intern. Med. 273, 197–204 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Everett, B. M. et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am. Heart J. 166, 199–207.e15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nidorf, S. M., Eikelboom, J. W. & Thompson, P. L. Colchicine for secondary prevention of cardiovascular disease. Curr. Atheroscler. Rep. 16, 391 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Nuki, G. Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Curr. Rheumatol. Rep. 10, 218–227 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crittenden, D. B. et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J. Rheumatol. 39, 1458–1464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grimaldi-Bensouda, L. et al. Impact of allopurinol on risk of myocardial infarction. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202972.

  27. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Ridker, P. M., Thuren, T., Zalewski, A. & Libby, P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162, 597–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Kaya, E. B. et al. Serum uric acid levels predict the severity and morphology of coronary atherosclerosis detected by multidetector computed tomography. Atherosclerosis 213, 178–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Higgins, P. et al. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc. Ther. 30, 217–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. George, J., Carr, E., Davies, J., Belch, J. J. & Struthers, A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114, 2508–2516 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kushiyama, A. et al. Xanthine oxidoreductase is involved in macrophage foam cell formation and atherosclerosis development. Arterioscler. Thromb. Vasc. Biol. 32, 291–298 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Noman, A., Ang, D. S., Ogston, S., Lang, C. C. & Struthers, A. D. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet 375, 2161–2167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rentoukas, E. et al. The prognostic impact of allopurinol in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Int. J. Cardiol. 145, 257–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Topol, E. J. et al. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators. Lancet 343, 881–886 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Wallberg-Jonsson, S., Ohman, M. L. & Dahlqvist, S. R. Cardiovascular morbidity and mortality in patients with seropositive rheumatoid arthritis in Northern Sweden. J. Rheumatol. 24, 445–451 (1997).

    CAS  PubMed  Google Scholar 

  37. Holmqvist, M. E. et al. No increased occurrence of ischemic heart disease prior to the onset of rheumatoid arthritis: results from two Swedish population-based rheumatoid arthritis cohorts. Arthritis Rheum. 60, 2861–2869 (2009).

    Article  PubMed  Google Scholar 

  38. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Jacobsson, L. T. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol. 32, 1213–1218 (2005).

    CAS  PubMed  Google Scholar 

  40. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor α therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bevilacqua, M. P., Pober, J. S., Majeau, G. R., Cotran, R. S. & Gimbrone, M. A. Jr. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J. Exp. Med. 160, 618–623 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Libby, P., Warner, S. J. & Friedman, G. B. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest. 81, 487–98 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ridker, P. M. et al. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126, 2739–2748 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, T. S., Yen, H. C., Pan, C. C. & Chau, L. Y. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 19, 734–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117–1125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yong, K. et al. Interleukin-12 is associated with arterial stiffness in healthy individuals. Am. J. Hypertens. 26, 159–162 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. David, A. et al. Interleukin-23 serum levels in patients affected by peripheral arterial disease. Clin. Biochem. 45, 275–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Gistera, A. et al. Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl. Med. 5, 196ra100 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Ryan, C. et al. Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA 306, 864–871 (2011).

    CAS  PubMed  Google Scholar 

  51. Tzellos, T., Kyrgidis, A. & Zouboulis, C. C. Re-evaluation of the risk for major adverse cardiovascular events in patients treated with anti-IL-12/23 biological agents for chronic plaque psoriasis: a meta-analysis of randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. 27, 622–627 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Koenen, R. R. & Weber, C. Chemokines: established and novel targets in atherosclerosis. EMBO Mol. Med. 3, 713–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Gilbert, J. et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am. J. Cardiol. 107, 906–911 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest. 121, 2898–2910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burke, J. E. & Dennis, E. A. Phospholipase A2 structure/function, mechanism, and signaling. J. Lipid. Res. 50 (Suppl.), S237–S242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rosenson, R. S. & Gelb, M. H. Secretory phospholipase A2: a multifaceted family of proatherogenic enzymes. Curr. Cardiol. Rep. 11, 445–451 (2009).

    Article  PubMed  Google Scholar 

  58. Suckling, K. E. Phospholipase A2 inhibitors in the treatment of atherosclerosis: a new approach moves forward in the clinic. Expert Opin. Investig. Drugs 18, 1425–1430 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Rosenson, R. S. & Hurt-Camejo, E. Phospholipase A2 enzymes and the risk of atherosclerosis. Eur. Heart J. 33, 2899–2909 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Fraser, H. et al. Varespladib (A-002), a secretory phospholipase A2 inhibitor, reduces atherosclerosis and aneurysm formation in ApoE−/− mice. J. Cardiovasc. Pharmacol. 53, 60–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Shaposhnik, Z., Wang, X., Trias, J., Fraser, H. & Lusis, A. J. The synergistic inhibition of atherogenesis in apoE−/− mice between pravastatin and the sPLA2 inhibitor varespladib (A-002). J. Lipid Res. 50, 623–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenson, R. S. et al. Effects of varespladib methyl on biomarkers and major cardiovascular events in acute coronary syndrome patients. J. Am. Coll. Cardiol. 56, 1079–1088 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Nicholls, S. J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA 311, 252–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Ait-Oufella, H. et al. Group X secreted phospholipase A2 limits the development of atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 33, 466–473 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Tsimikas, S., Tsironis, L. D. & Tselepis, A. D. New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 27, 2094–2099 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Kolodgie, F. D. et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 2523–2529 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Wilensky, R. L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat. Med. 14, 1059–1066 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Serruys, P. W. et al. Effects of the direct lipoprotein-associated phospholipase A2 inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 118, 1172–1182 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. STABILITY Investigators. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med. 370, 1702–1711 (2014).

  70. O'Donoghue, M. L. et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID–TIMI 52 randomized clinical trial. JAMA 312, 1006–1015 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Capra, V., Bäck, M., Angiolillo, D. J., Cattaneo, M. & Sakariassen, K. S. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J. Thromb. Haemost. 12, 126–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Gabrielsen, A. et al. Thromboxane synthase expression and thromboxane A2 production in the atherosclerotic lesion. J. Mol. Med. (Berl.) 88, 795–806 (2010).

    Article  CAS  Google Scholar 

  73. Petri, M. H. et al. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 441, 393–398 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Bousser, M. G. et al. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet 377, 2013–2022 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Stemme, V., Swedenborg, J., Claesson, H. & Hansson, G. K. Expression of cyclo-oxygenase-2 in human atherosclerotic carotid arteries. Eur. J. Vasc. Endovasc. Surg. 20, 146–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Bäck, M., Yin, L. & Ingelsson, E. Cyclooxygenase-2 inhibitors and cardiovascular risk in a nation-wide cohort study after the withdrawal of rofecoxib. Eur. Heart J. 33, 1928–1933 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Foudi, N. et al. Altered reactivity to norepinephrine through COX-2 induction by vascular injury in hypercholesterolemic rabbits. Am. J. Physiol. Heart Circ. Physiol. 297, H1882–H1888 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Hui, Y. et al. Targeted deletions of cyclooxygenase-2 and atherogenesis in mice. Circulation 121, 2654–2660 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang, S. Y. et al. Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation 129, 1761–1769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Babaev, V. R. et al. Cyclooxygenase-1 deficiency in bone marrow cells increases early atherosclerosis in apolipoprotein E- and low-density lipoprotein receptor-null mice. Circulation 113, 108–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Rådmark, O. & Samuelsson, B. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Biochem. Biophys. Res. Commun. 396, 105–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Bäck, M. et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br. J. Pharmacol. 171, 3551–3574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bäck, M. & Hansson, G. K. Leukotriene receptors in atherosclerosis. Ann. Med. 38, 493–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Nagy, E. et al. Upregulation of the 5-lipoxygenase pathway in human aortic valves correlates with severity of stenosis and leads to leukotriene-induced effects on valvular myofibroblasts. Circulation 123, 1316–1325 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Bäck, M., Gasser, T. C., Michel, J. B. & Caligiuri, G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res. 99, 232–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kwak, B. R. et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 14, 3013–3020 (2014).

    Article  CAS  Google Scholar 

  87. Otsuka, F., Sakakura, K., Yahagi, K., Joner, M. & Virmani, R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler. Thromb. Vasc. Biol. 34, 724–736 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Spanbroek, R. et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc. Natl Acad. Sci. USA 100, 1238–1243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Allen, S., Dashwood, M., Morrison, K. & Yacoub, M. Differential leukotriene constrictor responses in human atherosclerotic coronary arteries. Circulation 97, 2406–2413 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. De Caterina, R. et al. Sulfido-peptide leukotrienes in coronary heart disease—relationship with disease instability and myocardial ischaemia. Eur. J. Clin. Invest. 40, 258–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Labat, C. et al. Inflammatory mediators in saliva associated with arterial stiffness and subclinical atherosclerosis. J. Hypertens. 31, 2251–2258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stanke-Labesque, F. et al. Leukotriene B4 pathway activation and atherosclerosis in obstructive sleep apnea. J. Lipid Res. 53, 1944–1951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bäck, M. Inhibitors of the 5-lipoxygenase pathway in atherosclerosis. Curr. Pharm. Des. 15, 3116–3132 (2009).

    Article  PubMed  Google Scholar 

  94. Jawien, J. et al. Inhibition of five lipoxygenase activating protein (FLAP) by MK-886 decreases atherosclerosis in apoE/LDLR-double knockout mice. Eur. J. Clin. Invest. 36, 141–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Bäck, M., Sultan, A., Ovchinnikova, O. & Hansson, G. K. 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation. Circ. Res. 100, 946–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Yu, Z. et al. Disruption of the 5-lipoxygenase pathway attenuates atherogenesis consequent to COX-2 deletion in mice. Proc. Natl Acad. Sci. USA 109, 6727–6732 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bäck, M. et al. Leukotriene B4 signaling through NF-κB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc. Natl Acad. Sci. USA 102, 17501–17506 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heller, E. A. et al. Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment. Circulation 112, 578–586 (2005).

    Article  PubMed  Google Scholar 

  99. Hlawaty, H. et al. Leukotriene receptor antagonism and the prevention of extracellular matrix degradation during atherosclerosis and in-stent stenosis. Arterioscler. Thromb. Vasc. Biol. 29, 518–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Mueller, C. F. et al. Multidrug resistance protein-1 affects oxidative stress, endothelial dysfunction, and atherogenesis via leukotriene C4 export. Circulation 117, 2912–2918 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Allayee, H. et al. The effect of montelukast and low-dose theophylline on cardiovascular disease risk factors in asthmatics. Chest 132, 868–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Ingelsson, E., Yin, L. & Bäck, M. Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease. J. Allergy Clin. Immunol. 129, 702–707 e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Hakonarson, H. et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA 293, 2245–2256 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Tardif, J. C. et al. Treatment with 5-lipoxygenase inhibitor VIA-2291 (Atreleuton) in patients with recent acute coronary syndrome. Circ. Cardiovasc. Imaging 3, 298–307 (2010).

    Article  PubMed  Google Scholar 

  105. Liu, H. Q. et al. NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 33, 2193–2201 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Bitto, A. et al. Evidence for markers of hypoxia and apoptosis in explanted human carotid atherosclerotic plaques. J. Vasc. Surg. 52, 1015–1021 (2010).

    Article  PubMed  Google Scholar 

  107. Seeger, F. H. et al. Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res. Cardiol. 105, 389–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Morris, J. B. et al. p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler. Thromb. Vasc. Biol. 28, 265–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Fisk, M., Gajendragadkar, P. R., Maki-Petaja, K. M., Wilkinson, I. B. & Cheriyan, J. Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease. Am. J. Cardiovasc. Drugs 14, 155–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Sarov-Blat, L. et al. Inhibition of p38 mitogen-activated protein kinase reduces inflammation after coronary vascular injury in humans. Arterioscler. Thromb. Vasc. Biol. 30, 2256–2263 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Natarajan, P. & Cannon, C. P. Could direct inhibition of inflammation be the “next big thing” in treating atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 30, 2081–2083 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Cheriyan, J. et al. Inhibition of p38 mitogen-activated protein kinase improves nitric oxide-mediated vasodilatation and reduces inflammation in hypercholesterolemia. Circulation 123, 515–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Elkhawad, M. et al. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC Cardiovasc. Imaging 5, 911–922 (2012).

    Article  PubMed  Google Scholar 

  114. Melloni, C. et al. The study of LoSmapimod treatment on inflammation and InfarCtSizE (SOLSTICE): design and rationale. Am. Heart J. 164, 646–653.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Newby, L. K. et al. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 384, 1187–1195 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Parmar, K. M. et al. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem. 280, 26714–26719 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Ali, F. et al. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem. 284, 18882–18892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. van Thienen, J. V. et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc. Res. 72, 231–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Sorescu, D. et al. Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105, 1429–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Guzik, T. J. et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105, 1656–1662 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Sheehan, A. L. et al. Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis 216, 321–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Judkins, C. P. et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am. J. Physiol. Heart Circ. Physiol. 298, H24–H32 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Gray, S. P. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127, 1888–1902 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Di Marco, E. et al. Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe−/− mice. Diabetologia 57, 633–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Iida, O. et al. Cilostazol reduces angiographic restenosis after endovascular therapy for femoropopliteal lesions in the Sufficient Treatment of Peripheral Intervention by Cilostazol study. Circulation 127, 2307–2315 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Douglas, J. S. Jr et al. Coronary stent restenosis in patients treated with cilostazol. Circulation 112, 2826–2832 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Souness, J. E., Hassall, G. A. & Parrott, D. P. Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors. Biochem. Pharmacol. 44, 857–866 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Ishizaka, N. et al. Effects of a single local administration of cilostazol on neointimal formation in balloon-injured rat carotid artery. Atherosclerosis 142, 41–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Takase, H. et al. Anti-atherosclerotic effect of cilostazol in apolipoprotein-E knockout mice. Arzneimittelforschung 57, 185–191 (2007).

    CAS  PubMed  Google Scholar 

  130. Beghe, B., Rabe, K. F. & Fabbri, L. M. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am. J. Respir. Crit. Care Med. 188, 271–278 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. White, W. B. et al. Cardiovascular safety in patients receiving roflumilast for the treatment of COPD. Chest 144, 758–765 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Balarini, C. M. et al. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse. J. Transl. Med. 11, 3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, Q., Kleindienst, R., Waitz, W., Dietrich, H. & Wick, G. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J. Clin. Invest. 91, 2693–2702 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92, 821–825 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16, 1074–1079 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A. K. & Hansson, G. K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 108–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Ketelhuth, D. F., Gistera, A., Johansson, D. K. & Hansson, G. K. T cell-based therapies for atherosclerosis. Curr. Pharm. Des. 19, 5850–5858 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. van Puijvelde, G. H. et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114, 1968–1976 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 946–952 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Shah, P. K., Chyu, K., Dimayuga, P. C. & Nilsson, J. Vaccine for atherosclerosis. J. Am. Coll. Cardiol. 64, 2779–2791 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Xu, Q. et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler. Thromb. 12, 789–799 (1992).

    Article  CAS  PubMed  Google Scholar 

  143. George, J. et al. Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler. Thromb. Vasc. Biol. 19, 505–510 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Ait-Oufella, H. et al. Measles virus nucleoprotein induces a regulatory immune response and reduces atherosclerosis in mice. Circulation 116, 1707–1713 (2007).

    Article  PubMed  Google Scholar 

  146. Ovchinnikova, O. A. et al. Mycobacterium bovis BCG killed by extended freeze-drying induces an immunoregulatory profile and protects against atherosclerosis. J. Intern. Med. 275, 49–58 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Swedish Research Council, the Swedish Heart and Lung Foundation, the Stockholm County Council, the European Commission, and the Linnaeus Center of Excellence for Research on Inflammation and Cardiovascular disease (CERIC).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Magnus Bäck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bäck, M., Hansson, G. Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol 12, 199–211 (2015). https://doi.org/10.1038/nrcardio.2015.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing