Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiopulmonary resuscitation and management of cardiac arrest

This article has been updated

Abstract

The best chance of survival with a good neurological outcome after cardiac arrest is afforded by early recognition and high-quality cardiopulmonary resuscitation (CPR), early defibrillation of ventricular fibrillation (VF), and subsequent care in a specialist center. Compression-only CPR should be used by responders who are unable or unwilling to perform mouth-to-mouth ventilations. After the first defibrillator shock, further rhythm checks and defibrillation attempts should be performed after 2 min of CPR. The underlying cause of cardiac arrest can be identified and treated during CPR. Drugs have a limited effect on long-term outcomes after cardiac arrest, although epinephrine improves the success of resuscitation, and amiodarone increases the success of defibrillation for refractory VF. Supraglottic airway devices are an alternative to tracheal intubation, which should be attempted only by skilled rescuers. Care after cardiac arrest includes controlled reoxygenation, therapeutic hypothermia for comatose survivors, percutaneous coronary intervention, circulatory support, and control of blood-glucose levels and seizures. Prognostication in comatose survivors of cardiac arrest needs a careful, multimodal approach using clinical and electrophysiological assessments after at least 72 h.

Key Points

  • Survival from cardiac arrest depends on a sequence of interventions: early recognition and call for help, early cardiopulmonary resuscitation (CPR), early defibrillation, and postarrest care

  • Survival to hospital discharge is approximately 15–20% and <10% after in-hospital or out-of-hospital cardiac arrest, respectively

  • Early bystander CPR doubles survival from cardiac arrest; interventions such as training, dispatcher-assisted CPR, and the use of compression-only CPR can increase the number of individuals who receive bystander CPR

  • High-quality CPR (adequate compression rate and depth, allowing recoil, and minimizing hands-off time) improves survival; feedback devices improve CPR quality, but did not increase patient survival in a cluster-randomized trial

  • Ventricular fibrillation should be treated with early defibrillation with minimal interruption to CPR; the role of drugs and the use of airway interventions during CPR require further study

  • The quality of care after successful resuscitation (including therapeutic hypothermia, percutaneous coronary intervention, and a multimodal approach to prognostication) is a major determinant of survival with good neurological outcome

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The development of CPR.
Figure 2: Interventions in the 'chain of survival'.1

Similar content being viewed by others

Change history

  • 27 June 2012

    In the version of this article initially published online, the sentence “A study of the ITD compared with a sham valve when used with conventional CPR showed no benefit with the ITD.62” on page 4 should have read “A study of the ITD compared with a sham valve when used with conventional CPR showed no benefit with the ITD.62” The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Nolan, J., Soar, J. & Eikeland, H. The chain of survival. Resuscitation 71, 270–271 (2006).

    Article  PubMed  Google Scholar 

  2. Nolan, J. P. et al. Part 1: executive summary: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 81 (Suppl. 1), e1–e25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Morley, P. T. et al. Part 3: evidence evaluation process: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 81 (Suppl. 1), e32–e40 (2010).

    Article  PubMed  Google Scholar 

  4. Mackay, J., Mensah, G. A., Mendis, S. & Greenlund, K. The Atlas of Heart Disease and Stroke (WHO, Geneva, 2004).

    Google Scholar 

  5. Myerburg, R. J. & Junttila, J. Sudden cardiac death caused by coronary heart disease. Circulation 125, 1043–1052 (2012).

    Article  PubMed  Google Scholar 

  6. Kürciyan, I. et al. Accuracy and impact of presumed cause in patients with cardiac arrest. Circulation 98, 766–771 (1998).

    Article  Google Scholar 

  7. Merchant, R. M. et al. Incidence of treated cardiac arrest in hospitalized patients in the United States. Crit. Care Med. 39, 2401–2406 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meaney, P. A. et al. Rhythms and outcomes of adult in-hospital cardiac arrest. Crit. Care Med. 38, 101–108 (2010).

    Article  PubMed  Google Scholar 

  9. Sasson, C., Rogers, M. A., Dahl, J. & Kellermann, A. L. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 3, 63–81 (2010).

    Article  PubMed  Google Scholar 

  10. Nichol, G. et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 300, 1423–1431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hollenberg, J. et al. Improved survival after out-of-hospital cardiac arrest is associated with an increase in proportion of emergency crew-witnessed cases and bystander cardiopulmonary resuscitation. Circulation 118, 389–396 (2008).

    Article  PubMed  Google Scholar 

  12. Kudenchuk, P. J. et al. Impact of changes in resuscitation practice on survival and neurological outcome after out-of-hospital cardiac arrest resulting from nonshockable arrhythmias. Circulation 125, 1787–1794 (2012).

    Article  PubMed  Google Scholar 

  13. Kause, J. et al. A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom-—the ACADEMIA study. Resuscitation 62, 275–282 (2004).

    Article  PubMed  Google Scholar 

  14. Smith, G. B. In-hospital cardiac arrest: is it time for an in-hospital 'chain of prevention'? Resuscitation 81, 1209–1211 (2010).

    Article  PubMed  Google Scholar 

  15. Jones, D. A., DeVita, M. A. & Bellomo, R. Rapid-response teams. N. Engl. J. Med. 365, 139–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Konrad, D. et al. Reducing in-hospital cardiac arrests and hospital mortality by introducing a medical emergency team. Intensive Care Med. 36, 100–106 (2010).

    Article  PubMed  Google Scholar 

  17. Chan, P. S., Jain, R., Nallmothu, B. K., Berg, R. A. & Sasson, C. Rapid response teams: a systematic review and meta-analysis. Arch. Intern. Med. 170, 18–26 (2010).

    Article  PubMed  Google Scholar 

  18. Muller, D., Agrawal, R. & Arntz, H. R. How sudden is sudden cardiac death? Circulation 114, 1146–1150 (2006).

    Article  PubMed  Google Scholar 

  19. Bradley, S. M. & Rea, T. D. Improving bystander cardiopulmonary resuscitation. Curr. Opin. Crit. Care 17, 219–224 (2011).

    Article  PubMed  Google Scholar 

  20. Soar, J. et al. Part 12: education, implementation, and teams: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 81 (Suppl. 1), e288–e330 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lick, C. J. et al. Take Heart America: a comprehensive, community-wide, systems-based approach to the treatment of cardiac arrest. Crit. Care Med. 39, 26–33 (2011).

    Article  PubMed  Google Scholar 

  22. Cave, D. M. et al. Importance and implementation of training in cardiopulmonary resuscitation and automated external defibrillation in schools: a science advisory from the American Heart Association. Circulation 123, 691–706 (2011).

    Article  PubMed  Google Scholar 

  23. SOS-KANTO Study Group. Cardiopulmonary resuscitation by bystanders with chest compression only (SOS-KANTO): an observational study. Lancet 369, 920–926 (2007).

  24. Waalewijn, R. A., Tijssen, J. G. & Koster, R. W. Bystander initiated actions in out-of-hospital cardiopulmonary resuscitation: results from the Amsterdam Resuscitation Study (ARRESUST). Resuscitation 50, 273–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Van Hoeyweghen, R. J. et al. Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group. Resuscitation 26, 47–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Iwami, T. et al. Effectiveness of bystander-initiated cardiac-only resuscitation for patients with out-of-hospital cardiac arrest. Circulation 116, 2900–2907 (2007).

    Article  PubMed  Google Scholar 

  27. Bohm, K., Rosenqvist, M., Herlitz, J., Hollenberg, J. & Svensson, L. Survival is similar after standard treatment and chest compression only in out-of-hospital bystander cardiopulmonary resuscitation. Circulation 116, 2908–2912 (2007).

    Article  PubMed  Google Scholar 

  28. Ong, M. E. et al. Comparison of chest compression only and standard cardiopulmonary resuscitation for out-of-hospital cardiac arrest in Singapore. Resuscitation 78, 119–126 (2008).

    Article  PubMed  Google Scholar 

  29. Olasveengen, T. M., Wik, L. & Steen, P. A. Standard basic life support vs. continuous chest compressions only in out-of-hospital cardiac arrest. Acta Anaesthesiol. Scand. 52, 914–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bobrow, B. J. et al. Chest compression-only CPR by lay rescuers and survival from out-of-hospital cardiac arrest. JAMA 304, 1447–1454 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Hupfl, M., Selig, H. F. & Nagele, P. Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet 376, 1552–1557 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ogawa, T. et al. Outcomes of chest compression only CPR versus conventional CPR conducted by lay people in patients with out of hospital cardiopulmonary arrest witnessed by bystanders: nationwide population based observational study. BMJ 342, c7106 (2011).

    Article  PubMed  Google Scholar 

  33. Kitamura, T. et al. Conventional and chest-compression-only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study. Lancet 375, 1347–1354 (2010).

    Article  PubMed  Google Scholar 

  34. Sayre, M. R. et al. Hands-only (compression-only) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovascular Care Committee. Circulation 117, 2162–2167 (2008).

    Article  PubMed  Google Scholar 

  35. Hallstrom, A., Cobb, L., Johnson, E. & Copass, M. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N. Engl. J. Med. 342, 1546–1553 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Svensson, L. et al. Compression-only CPR or standard CPR in out-of-hospital cardiac arrest. N. Engl. J. Med. 363, 434–442 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Rea, T. D. et al. CPR with chest compression alone or with rescue breathing. N. Engl. J. Med. 363, 423–433 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Nolan, J. P. & Soar, J. Dispatcher-assisted bystander CPR: a KISS for a kiss. Lancet 376, 1522–1524 (2010).

    Article  PubMed  Google Scholar 

  39. Soar, J., Edelson, D. P. & Perkins, G. D. Delivering high-quality cardiopulmonary resuscitation in hospital. Curr. Opin. Crit. Care 17, 225–230 (2011).

    Article  PubMed  Google Scholar 

  40. Christenson, J. et al. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation 120, 1241–1247 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garza, A. G. et al. Improved patient survival using a modified resuscitation protocol for out-of-hospital cardiac arrest. Circulation 119, 2597–2605 (2009).

    Article  PubMed  Google Scholar 

  42. Deakin, C. D. et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 81, 1305–1352 (2010).

    Article  PubMed  Google Scholar 

  43. Edelson, D. P. et al. Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 71, 137–145 (2006).

    Article  PubMed  Google Scholar 

  44. Stiell, I. G. et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit. Care Med. 40, 1192–1198 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Berg, R. A. et al. Part 5: adult basic life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122 (Suppl. 3), S685–S705 (2010).

    Article  PubMed  Google Scholar 

  46. Koster, R. W. et al. Part 5: adult basic life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 81 (Suppl. 1), e48–e70 (2010).

    Article  PubMed  Google Scholar 

  47. Sugerman, N. T. et al. Rescuer fatigue during actual in-hospital cardiopulmonary resuscitation with audiovisual feedback: a prospective multicenter study. Resuscitation 80, 981–984 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Andersen, P. O., Maaloe, R. & Andersen, H. B. Critical incidents related to cardiac arrests reported to the Danish Patient Safety Database. Resuscitation 81, 312–316 (2010).

    Article  PubMed  Google Scholar 

  49. Andersen, P. O., Jensen, M. K., Lippert, A. & Ostergaard, D. Identifying non-technical skills and barriers for improvement of teamwork in cardiac arrest teams. Resuscitation 81, 695–702 (2010).

    Article  PubMed  Google Scholar 

  50. Edelson, D. P. et al. Improving in-hospital cardiac arrest process and outcomes with performance debriefing. Arch. Intern. Med. 168, 1063–1069 (2008).

    Article  PubMed  Google Scholar 

  51. Yeung, J. et al. The use of CPR feedback/prompt devices during training and CPR performance: a systematic review. Resuscitation 80, 743–751 (2009).

    Article  PubMed  Google Scholar 

  52. Putzer, G., Tiefenthaler, W., Mair, P. & Paal, P. Near-infrared spectroscopy during cardiopulmonary resuscitation of a hypothermic polytraumatised cardiac arrest patient. Resuscitation 83, e1–e2 (2012).

    Article  PubMed  Google Scholar 

  53. Parnia, S. Cerebral oximetry—the holy grail of non-invasive cerebral perfusion monitoring in cardiac arrest or just a false dawn? Resuscitation 83, 11–12 (2012).

    Article  PubMed  Google Scholar 

  54. Kamarainen, A. et al. Quality controlled manual chest compressions and cerebral oxygenation during in-hospital cardiac arrest. Resuscitation 83, 138–142 (2012).

    Article  PubMed  Google Scholar 

  55. Hostler, D. et al. Effect of real-time feedback during cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial. BMJ 342, d512 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Merchant, R. M. et al. Cell phone cardiopulmonary resuscitation: audio instructions when needed by lay rescuers: a randomized, controlled trial. Ann. Emerg. Med. 55, 538–543 e531 (2010).

    Article  PubMed  Google Scholar 

  57. Low, D. et al. A randomised control trial to determine if use of the iResus(c) application on a smart phone improves the performance of an advanced life support provider in a simulated medical emergency. Anaesthesia 66, 255–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Paal, P. et al. Mobile phone-assisted basic life support augmented with a metronome. J. Emerg. Med. http://dx.doi.org/10.1016/j.jemermed.2011.09.011.

  59. Aufderheide, T. P. et al. From laboratory science to six emergency medical services systems: new understanding of the physiology of cardiopulmonary resuscitation increases survival rates after cardiac arrest. Crit. Care Med. 36 (Suppl. 11), S397–S404 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cabrini, L. et al. Impact of impedance threshold devices on cardiopulmonary resuscitation: a systematic review and meta-analysis of randomized controlled studies. Crit. Care Med. 36, 1625–1632 (2008).

    Article  PubMed  Google Scholar 

  61. Aufderheide, T. P. et al. Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet 377, 301–311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aufderheide, T. P. et al. A trial of an impedance threshold device in out-of-hospital cardiac arrest. N. Engl. J. Med. 365, 798–806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liao, Q., Sjoberg, T., Paskevicius, A., Wohlfart, B. & Steen, S. Manual versus mechanical cardiopulmonary resuscitation. An experimental study in pigs. BMC Cardiovasc. Disord. 10, 53 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Vaillancourt, C., Midzic, I., Taljaard, M. & Chisamore, B. Performer fatigue and CPR quality comparing 30:2 to 15:2 compression to ventilation ratios in older bystanders: a randomized crossover trial. Resuscitation 82, 51–56 (2011).

    Article  PubMed  Google Scholar 

  65. Olasveengen, T. M., Wik, L. & Steen, P. A. Quality of cardiopulmonary resuscitation before and during transport in out-of-hospital cardiac arrest. Resuscitation 76, 185–190 (2008).

    Article  PubMed  Google Scholar 

  66. Chung, T. N. et al. Effect of vehicle speed on the quality of closed-chest compression during ambulance transport. Resuscitation 81, 841–847 (2010).

    Article  PubMed  Google Scholar 

  67. Lerner, E. B. et al. Design of the Circulation Improving Resuscitation Care (CIRC) trial: a new state of the art design for out-of-hospital cardiac arrest research. Resuscitation 82, 294–299 (2011).

    Article  PubMed  Google Scholar 

  68. Oberladstaetter, D. et al. Autopsy is more sensitive than computed tomography in detection of LUCAS-CPR related non-dislocated chest fractures. Resuscitation 83, e89–e90 (2012).

    Article  PubMed  Google Scholar 

  69. Brooks, S. C., Bigham, B. L. & Morrison, L. J. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD007260 http://do.doi.org/10.1002/14651858.CD007260.pub2 (2011).

  70. Lerner, E. B. et al. Design of the Circulation Improving Resuscitation Care (CIRC) trial: a new state of the art design for out-of-hospital cardiac arrest research. Resuscitation 82, 294–299 (2011).

    Article  PubMed  Google Scholar 

  71. Wik, L. et al. Comparison of survival to hospital discharge between integrated AutoPulse-CPR and manual-CPR during out-of-hospital cardiac arrest of presumed cardiac origin: the Circulation Improving Resuscitation Care (CIRC) trial [abstract 291]. Presented at the 9th Resuscitation Science Symposium.

  72. Perkins, G. D. et al. Prehospital randomised assessment of a mechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol. Scand. J. Trauma Resusc. Emerg. Med. 18, 58 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen, Y. S. et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 372, 554–561 (2008).

    Article  PubMed  Google Scholar 

  74. Thiagarajan, R. R. et al. Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in adults. Ann. Thorac. Surg. 87, 778–785 (2009).

    Article  PubMed  Google Scholar 

  75. Valenzuela, T. D., Roe, D. J., Cretin, S., Spaite, D. W. & Larsen, M. P. Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation 96, 3308–3313 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Spearpoint, K. G., Gruber, P. C. & Brett, S. J. Impact of the Immediate Life Support course on the incidence and outcome of in-hospital cardiac arrest calls: an observational study over 6 years. Resuscitation 80, 638–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Hallstrom, A. P. et al. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N. Engl. J. Med. 351, 637–646 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Kitamura, T. et al. Nationwide public-access defibrillation in Japan. N. Engl. J. Med. 362, 994–1004 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Chan, P. S. et al. Automated external defibrillators and survival after in-hospital cardiac arrest. JAMA 304, 2129–2136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stiell, I. G. et al. Early versus later rhythm analysis in patients with out-of-hospital cardiac arrest. N. Engl. J. Med. 365, 787–797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheskes, S. et al. Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation 124, 58–66 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Edelson, D. P. et al. Safety and efficacy of defibrillator charging during ongoing chest compressions: a multi-center study. Resuscitation 81, 1521–1526 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Deakin, C. D., Nolan, J. P., Sunde, K. & Koster, R. W. European Resuscitation Council guidelines for resuscitation 2010 section 3. Electrical therapies: automated external defibrillators, defibrillation, cardioversion and pacing. Resuscitation 81, 1293–1304 (2010).

    Article  PubMed  Google Scholar 

  84. Lloyd, M. S., Heeke, B., Walter, P. F. & Langberg, J. J. Hands-on defibrillation: an analysis of electrical current flow through rescuers in direct contact with patients during biphasic external defibrillation. Circulation 117, 2510–2514 (2008).

    Article  PubMed  Google Scholar 

  85. Deakin, C. D. Advances in defibrillation. Curr. Opin. Crit. Care 17, 231–235 (2011).

    Article  PubMed  Google Scholar 

  86. Nolan, J. P. & Soar, J. Airway techniques and ventilation strategies. Curr. Opin. Crit. Care 14, 279–286 (2008).

    Article  PubMed  Google Scholar 

  87. Gabrielli, A. et al. Lower esophageal sphincter pressure measurement during cardiac arrest in humans: potential implications for ventilation of the unprotected airway. Anesthesiology 103, 897–899 (2005).

    Article  PubMed  Google Scholar 

  88. Oschatz, E. et al. Cardiopulmonary resuscitation performed by bystanders does not increase adverse effects as assessed by chest radiography. Anesth. Analg. 93, 128–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Studnek, J. R. et al. The association between prehospital endotracheal intubation attempts and survival to hospital discharge among out-of-hospital cardiac arrest patients. Acad. Emerg. Med. 17, 918–925 (2010).

    Article  PubMed  Google Scholar 

  90. Wang, H. E., Simeone, S. J., Weaver, M. D. & Callaway, C. W. Interruptions in cardiopulmonary resuscitation from paramedic endotracheal intubation. Ann. Emerg. Med. 54, 645–652.e1 (2009).

    Article  PubMed  Google Scholar 

  91. Lyon, R. M. et al. Field intubation of cardiac arrest patients: a dying art? Emerg. Med. J. 27, 321–323 (2010).

    Article  PubMed  Google Scholar 

  92. Sayre, M. R. et al. Field trial of endotracheal intubation by basic EMTs. Ann. Emerg. Med. 31, 228–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Rumball, C., Macdonald, D., Barber, P., Wong, H. & Smecher, C. Endotracheal intubation and esophageal tracheal Combitube insertion by regular ambulance attendants: a comparative trial. Prehosp. Emerg. Care. 8, 15–22 (2004).

    Article  PubMed  Google Scholar 

  94. Pelucio, M., Halligan, L. & Dhindsa, H. Out-of-hospital experience with the syringe esophageal detector device. Acad. Emerg. Med. 4, 563–568 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Jones, J. H., Murphy, M. P., Dickson, R. L., Somerville, G. G. & Brizendine, E. J. Emergency physician-verified out-of-hospital intubation: miss rates by paramedics. Acad. Emerg. Med. 11, 707–709 (2004).

    PubMed  Google Scholar 

  96. Katz, S. H. & Falk, J. L. Misplaced endotracheal tubes by paramedics in an urban emergency medical services system. Ann. Emerg. Med. 37, 32–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Konrad, C., Schupfer, G., Wietlisbach, M. & Gerber, H. Learning manual skills in anesthesiology: is there a recommended number of cases for anesthetic procedures? Anesth. Analg. 86, 635–639 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Gatward, J. J., Thomas, M. J., Nolan, J. P. & Cook, T. M. Effect of chest compressions on the time taken to insert airway devices in a manikin. Br. J. Anaesth. 100, 351–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Baskett, P. J. The laryngeal mask in resuscitation. Resuscitation 28, 93–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Rumball, C. J. & MacDonald, D. The PTL, Combitube, laryngeal mask, and oral airway: a randomized prehospital comparative study of ventilatory device effectiveness and cost-effectiveness in 470 cases of cardiorespiratory arrest. Prehosp. Emerg. Care 1, 1–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Tanigawa, K. & Shigematsu, A. Choice of airway devices for 12,020 cases of nontraumatic cardiac arrest in Japan. Prehosp. Emerg. Care 2, 96–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Lefrancois, D. P. & Dufour, D. G. Use of the esophageal tracheal combitube by basic emergency medical technicians. Resuscitation 52, 77–83 (2002).

    Article  PubMed  Google Scholar 

  103. Kette, F. et al. The use of laryngeal tube by nurses in out-of-hospital emergencies: preliminary experience. Resuscitation 66, 21–25 (2005).

    Article  PubMed  Google Scholar 

  104. Asai, T., Moriyama, S., Nishita, Y. & Kawachi, S. Use of the laryngeal tube during cardiopulmonary resuscitation by paramedical staff. Anaesthesia 58, 393–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Genzwuerker, H. V., Dhonau, S. & Ellinger, K. Use of the laryngeal tube for out-of-hospital resuscitation. Resuscitation 52, 221–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Wiese, C. H. et al. The use of the laryngeal tube disposable (LT-D) by paramedics during out-of-hospital resuscitation—an observational study concerning ERC guidelines 2005. Resuscitation 80, 194–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Schalk, R. et al. Out-of-hospital airway management by paramedics and emergency physicians using laryngeal tubes. Resuscitation 81, 323–326 (2010).

    Article  PubMed  Google Scholar 

  108. Kajino, K. et al. Comparison of supraglottic airway versus endotracheal intubation for the pre-hospital treatment of out-of-hospital cardiac arrest. Crit. Care 15, R236 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tanigawa, K., Takeda, T., Goto, E. & Tanaka, K. The efficacy of esophageal detector devices in verifying tracheal tube placement: a randomized cross-over study of out-of-hospital cardiac arrest patients. Anesth. Analg. 92, 375–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Grmec, S. Comparison of three different methods to confirm tracheal tube placement in emergency intubation. Intensive Care Med. 28, 701–704 (2002).

    Article  PubMed  Google Scholar 

  111. Deakin, C. D. et al. Part 8: advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 81 (Suppl. 1), e93–e174 (2010).

    Article  PubMed  Google Scholar 

  112. Takeda, T. et al. The assessment of three methods to verify tracheal tube placement in the emergency setting. Resuscitation 56, 153–157 (2003).

    Article  PubMed  Google Scholar 

  113. Tanigawa, K., Takeda, T., Goto, E. & Tanaka, K. Accuracy and reliability of the self-inflating bulb to verify tracheal intubation in out-of-hospital cardiac arrest patients. Anesthesiology 93, 1432–1436 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Grmec, S., Lah, K. & Tusek-Bunc, K. Difference in end-tidal CO2 between asphyxia cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest in the prehospital setting. Crit. Care 7, R139–R144 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pokorna, M. et al. A sudden increase in partial pressure end-tidal carbon dioxide (PETCO2) at the moment of return of spontaneous circulation. J. Emerg. Med. 38, 614–621 (2010).

    Article  PubMed  Google Scholar 

  116. Safar, P., Brown, T. C. & Holtey, W. J. Failure of closed chest cardiac massage to produce pulmonary ventilation. Dis. Chest 41, 1–8 (1962).

    Article  CAS  PubMed  Google Scholar 

  117. Yannopoulos, D. et al. No assisted ventilation cardiopulmonary resuscitation and 24-hour neurological outcomes in a porcine model of cardiac arrest. Crit. Care Med. 38, 254–260 (2010).

    Article  PubMed  Google Scholar 

  118. Hayes, M. M. et al. Continuous passive oxygen insufflation results in a similar outcome to positive pressure ventilation in a swine model of out-of-hospital ventricular fibrillation. Resuscitation 74, 357–365 (2007).

    Article  PubMed  Google Scholar 

  119. Bobrow, B. J. et al. Passive oxygen insufflation is superior to bag-valve-mask ventilation for witnessed ventricular fibrillation out-of-hospital cardiac arrest. Ann. Emerg. Med. 54, 656–662.e1 (2009).

    Article  PubMed  Google Scholar 

  120. Aufderheide, T. P. et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 109, 1960–1965 (2004).

    Article  PubMed  Google Scholar 

  121. Weiser, G., Hoffmann, Y., Galbraith, R. & Shavit, I. Current advances in intraosseous infusion—a systematic review. Resuscitation 83, 20–26 (2012).

    Article  PubMed  Google Scholar 

  122. Manisterski, Y. et al. Endotracheal epinephrine: a call for larger doses. Anesth. Analg. 95, 1037–1041 (2002).

    CAS  PubMed  Google Scholar 

  123. Vaknin, Z. et al. Is endotracheal adrenaline deleterious because of the beta adrenergic effect? Anesth. Analg. 92, 1408–1412 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Ditchey, R. V. & Lindenfeld, J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 78, 382–389 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Olasveengen, T. M. et al. Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA 302, 2222–2229 (2009).

    Article  PubMed  Google Scholar 

  126. Jacobs, I. G., Finn, J. C., Jelinek, G. A., Oxer, H. F. & Thompson, P. L. Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial. Resuscitation 82, 1138–1143 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Hagihara, A. et al. Prehospital epinephrine use and survival among patients with out-of-hospital cardiac arrest. JAMA 307, 1161–1168 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Lindner, K. H. et al. Stress hormone response during and after cardiopulmonary resuscitation. Anesthesiology 77, 662–668 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Wenzel, V. et al. The use of arginine vasopressin during cardiopulmonary resuscitation. An analysis of experimental and clinical experience and a view of the future [German]. Anaesthesist 51, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Stiell, I. G. et al. Vasopressin versus epinephrine for inhospital cardiac arrest: a randomised controlled trial. Lancet 358, 105–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Wenzel, V. et al. A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N. Engl. J. Med. 350, 105–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Gueugniaud, P. Y. et al. Vasopressin and epinephrine vs. epinephrine alone in cardiopulmonary resuscitation. N. Engl. J. Med. 359, 21–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Mentzelopoulos, S. D. et al. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch. Intern. Med. 169, 15–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Kudenchuk, P. J. et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N. Engl. J. Med. 341, 871–878 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Dorian, P. et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N. Engl. J. Med. 346, 884–890 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Stiell, I. G. et al. Advanced cardiac life support in out-of-hospital cardiac arrest. N. Engl. J. Med. 351, 647–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Schwartz, A. C. Neurological recovery after cardiac arrest: clinical feasibility trial of calcium blockers. Am. J. Emerg. Med. 3, 1–10 (1985).

    Article  CAS  PubMed  Google Scholar 

  138. ACMT position statement: interim guidance for the use of lipid resuscitation therapy. J. Med. Toxicol. 7, 81–82 (2011).

  139. Weinberg, G. L. Limits to lipid in the literature and lab: what we know, what we don't know. Anesth. Analg. 108, 1062–1064 (2009).

    Article  PubMed  Google Scholar 

  140. Fischer, M., Bottiger, B. W., Popov-Cenic, S. & Hossmann, K. A. Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest: an experimental study in the cat. Intensive Care Med. 22, 1214–1223 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Bottiger, B. W. et al. Efficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation: a prospective clinical trial. Lancet 357, 1583–1585 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Bottiger, B. W. et al. Thrombolysis during resuscitation for out-of-hospital cardiac arrest. N. Engl. J. Med. 359, 2651–2662 (2008).

    Article  PubMed  Google Scholar 

  143. Nolan, J. P. et al. Outcome following admission to UK intensive care units after cardiac arrest: a secondary analysis of the ICNARC Case Mix Programme Database. Anaesthesia 62, 1207–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Tomte, O. et al. Strong and weak aspects of an established post-resuscitation treatment protocol—a five-year observational study. Resuscitation 82, 1186–1193 (2011).

    Article  PubMed  Google Scholar 

  145. Gaieski, D. F. et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation 80, 418–424 (2009).

    Article  PubMed  Google Scholar 

  146. Elliott, V. J., Rodgers, D. L. & Brett, S. J. Systematic review of quality of life and other patient-centred outcomes after cardiac arrest survival. Resuscitation 82, 247–256 (2011).

    Article  PubMed  Google Scholar 

  147. Nolan, J. P. et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation 79, 350–379 (2008).

    Article  PubMed  Google Scholar 

  148. Neumar, R. W. Optimal oxygenation during and after cardiopulmonary resuscitation. Curr. Opin. Crit. Care 17, 236–240 (2011).

    Article  PubMed  Google Scholar 

  149. Bossaert, L. et al. Part 9: acute coronary syndromes: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 81 (Suppl. 1), e175–e212 (2010).

    Article  PubMed  Google Scholar 

  150. Dumas, F. et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ. Cardiovasc. Interv. 3, 200–207 (2010).

    Article  PubMed  Google Scholar 

  151. Radsel, P., Knafelj, R., Kocjancic, S. & Noc, M. Angiographic characteristics of coronary disease and postresuscitation electrocardiograms in patients with aborted cardiac arrest outside a hospital. Am. J. Cardiol. 108, 634–638 (2011).

    Article  PubMed  Google Scholar 

  152. Zia, A. & Kern, K. B. Management of postcardiac arrest myocardial dysfunction. Curr. Opin. Crit. Care 17, 241–246 (2011).

    Article  PubMed  Google Scholar 

  153. Laurent, I. et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J. Am. Coll. Cardiol. 40, 2110–2116 (2002).

    Article  PubMed  Google Scholar 

  154. Gonzalez, M. M. et al. Left ventricular systolic function and outcome after in-hospital cardiac arrest. Circulation 117, 1864–1872 (2008).

    Article  PubMed  Google Scholar 

  155. Adrie, C. et al. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr. Opin. Crit. Care 10, 208–212 (2004).

    Article  PubMed  Google Scholar 

  156. Hovdenes, J., Laake, J. H., Aaberge, L., Haugaa, H. & Bugge, J. F. Therapeutic hypothermia after out-of-hospital cardiac arrest: experiences with patients treated with percutaneous coronary intervention and cardiogenic shock. Acta Anaesthesiol. Scand. 51, 137–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Tømte, O. et al. Strong and weak aspects of an established post-resuscitation treatment protocol—a five-year observational study. Resuscitation 82, 1186–1193 (2011).

    Article  PubMed  Google Scholar 

  158. Laver, S., Farrow, C., Turner, D. & Nolan, J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 30, 2126–2128 (2004).

    Article  PubMed  Google Scholar 

  159. Zeiner, A. et al. Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome. Arch. Intern. Med. 161, 2007–2012 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Walters, J. H., Morley, P. T. & Nolan, J. P. The role of hypothermia in post-cardiac arrest patients with return of spontaneous circulation: a systematic review. Resuscitation 82, 508–516 (2011).

    Article  PubMed  Google Scholar 

  161. Wood, S. C. Interactions between hypoxia and hypothermia. Annu. Rev. Physiol. 53, 71–85 (1991).

    Article  CAS  PubMed  Google Scholar 

  162. The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).

  163. Bernard, S. A. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 (2002).

    Article  PubMed  Google Scholar 

  164. Nolan, J. P., Morley, P. T., Vanden Hoek, T. L. & Hickey, R. W. Therapeutic hypothermia after cardiac arrest. An advisory statement by the Advancement Life Support Task Force of the International Liaison Committee on Resuscitation. Resuscitation 57, 231–235 (2003).

    Article  PubMed  Google Scholar 

  165. Testori, C. et al. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation 82, 1162–1167 (2011).

    Article  PubMed  Google Scholar 

  166. Kim, Y. M., Yim, H. W., Jeong, S. H., Klem, M. L. & Callaway, C. W. Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms? A systematic review and meta-analysis of randomized and non-randomized studies. Resuscitation 83, 188–196 (2012).

    Article  PubMed  Google Scholar 

  167. Nolan, J. P. & Soar, J. Does the evidence support the use of mild hypothermia after cardiac arrest? Yes. BMJ 343, d5830 (2011).

    Article  PubMed  Google Scholar 

  168. Bernard, S. A. et al. Induction of prehospital therapeutic hypothermia after resuscitation from nonventricular fibrillation cardiac arrest Crit. Care Med. 40, 747–753 (2012).

    Article  PubMed  Google Scholar 

  169. Soar, J., Foster, J. & Breitkreutz, R. Fluid infusion during CPR and after ROSC—is it safe? Resuscitation 80, 1221–1222 (2009).

    Article  PubMed  Google Scholar 

  170. Lyon, R. M. et al. Esophageal temperature after out-of-hospital cardiac arrest: an observational study. Resuscitation 81, 867–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Benz-Woerner, J. et al. Body temperature regulation and outcome after cardiac arrest and therapeutic hypothermia. Resuscitation 83, 338–342 (2012).

    Article  PubMed  Google Scholar 

  172. Holzer, M. Targeted temperature management for comatose survivors of cardiac arrest. N. Engl. J. Med. 363, 1256–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Merchant, R. M. et al. Therapeutic hypothermia after cardiac arrest: unintentional overcooling is common using ice packs and conventional cooling blankets. Crit. Care Med. 34 (Suppl. 12), S490–S494 (2006).

    Article  PubMed  Google Scholar 

  174. Larsson, I. M., Wallin, E. & Rubertsson, S. Cold saline infusion and ice packs alone are effective in inducing and maintaining therapeutic hypothermia after cardiac arrest. Resuscitation 81, 15–19 (2010).

    Article  PubMed  Google Scholar 

  175. Sun, S. et al. Pharmacologically induced hypothermia with cannabinoid receptor agonist WIN55, 212-2 after cardiopulmonary resuscitation. Crit. Care Med. 38, 2282–2286 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Weng, Y. et al. Cholecystokinin octapeptide induces hypothermia and improves outcomes in a rat model of cardiopulmonary resuscitation. Crit. Care Med. 39, 2407–2412 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Nagao, K. et al. Early induction of hypothermia during cardiac arrest improves neurological outcomes in patients with out-of-hospital cardiac arrest who undergo emergency cardiopulmonary bypass and percutaneous coronary intervention. Circ. J. 74, 77–85 (2010).

    Article  PubMed  Google Scholar 

  178. Polderman, K. H. & Herold, I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit. Care Med. 37, 1101–1120 (2009).

    Article  PubMed  Google Scholar 

  179. Tortorici, M. A., Kochanek, P. M. & Poloyac, S. M. Effects of hypothermia on drug disposition, metabolism, and response: A focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit. Care Med. 35, 2196–2204 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Oddo, M. & Rossetti, A. O. Predicting neurological outcome after cardiac arrest. Curr. Opin. Crit. Care 17, 254–259 (2011).

    Article  PubMed  Google Scholar 

  181. Nielsen, N. et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit. Care Med. 39, 57–64 (2011).

    Article  PubMed  Google Scholar 

  182. Dijk, J. M. & Tijssen, M. A. J. Management of patients with myoclonus: available therapies and the need for an evidence-based approach. Lancet Neurol. 9, 1028–1036 (2010).

    Article  PubMed  Google Scholar 

  183. Wijdicks, E. F. Propofol in myoclonus status epilepticus in comatose patients following cardiac resuscitation. J. Neurol. Neurosurg. Psychiatry 73, 94–95 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Young, G. B. Clinical practice. Neurologic prognosis after cardiac arrest. N. Engl. J. Med. 361, 605–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Wijdicks, E. F., Hijdra, A., Young, G. B., Bassetti, C. L. & Wiebe, S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 67, 203–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Samaniego, E. A., Mlynash, M., Caulfield, A. F., Eyngorn, I. & Wijman, C. A. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit. Care 15, 113–119 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Bisschops, L. L., van Alfen, N., Bons, S., van der Hoeven, J. G. & Hoedemaekers, C. W. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation 82, 696–701 (2011).

    Article  PubMed  Google Scholar 

  188. Bouwes, A. et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann. Neurol. 71, 206–212 (2012).

    Article  PubMed  Google Scholar 

  189. Rossetti, A. O., Oddo, M., Logroscino, G. & Kaplan, P. W. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann. Neurol. 67, 301–307 (2010).

    PubMed  Google Scholar 

  190. Steffen, I. G. et al. Mild therapeutic hypothermia alters neuron specific enolase as an outcome predictor after resuscitation: 97 prospective hypothermia patients compared to 133 historical non-hypothermia patients. Crit. Care 14, R69 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Adrie, C. et al. An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intens. Care Med. 34, 132–137 (2008).

    Article  CAS  Google Scholar 

  192. Sandroni, C. et al. Are patients brain-dead after successful resuscitation from cardiac arrest suitable as organ donors? A systematic review. Resuscitation 81, 1609–1614 (2010).

    Article  PubMed  Google Scholar 

  193. Soar, J. & Packham, S. Cardiac arrest centres make sense. Resuscitation 81, 507–508 (2010).

    Article  PubMed  Google Scholar 

  194. Kern, K. B. Good news for those resuscitated from out-of-hospital cardiac arrest. Resuscitation 82, 1126–1127 (2011).

    Article  PubMed  Google Scholar 

  195. Nolan, J. P. & Soar, J. Post resuscitation care—time for a care bundle? Resuscitation 76, 161–162 (2008).

    Article  PubMed  Google Scholar 

  196. Nichol, G. et al. Regional systems of care for out-of-hospital cardiac arrest: a policy statement from the American Heart Association. Circulation 121, 709–729 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel Pehboeck, Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria, for assistance with Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to researching the data for the article, discussions of its content, and to writing, reviewing, and editing the manuscript before submission.

Corresponding author

Correspondence to Volker Wenzel.

Ethics declarations

Competing interests

J. P. Nolan is a member of the European Resuscitation Council, the International Liaison Committee on Resuscitation, and the Resuscitation Council (UK). J. Soar is the Advanced Life Support Task Force co-chair for the International Liaison Committee on Resuscitation, and the chair of the Resuscitation Council (UK). The other authors declare no competing interests.

Supplementary information

Supplementary Box 1

The development of CPR* (DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolan, J., Soar, J., Wenzel, V. et al. Cardiopulmonary resuscitation and management of cardiac arrest. Nat Rev Cardiol 9, 499–511 (2012). https://doi.org/10.1038/nrcardio.2012.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing